eliminate_metric
Eliminate metrics by raising or lowering indices.
Eliminate metric and inverse metric objects by raising or lowering indices.{m, n, p, q, r}::Indices(vector, position=fixed).
{m, n, p, q, r}::Integer(0..9).
g_{m n}::Metric.
g^{m n}::InverseMetric.
g_{m}^{n}::KroneckerDelta.
g^{m}_{n}::KroneckerDelta.
ex:=g_{m p} g^{p m};
eliminate_metric(_);
\(\displaystyle{}g_{m p} g^{p m}\)
g_{m p} g^{p m}
\(\displaystyle{}g^{p}\,_{p}\)
g^{p}_{p}
eliminate_kronecker(_);
\(\displaystyle{}10\)
10
Related algorithms are
eliminate_kronecker
and eliminate_vielbein
.It is sometimes useful to eliminate only those metrics which have two
dummy indices (so as to avoid changing indices on non-metric factors),
as in the following example:
{a,b,c,d,e,f}::Indices(position=fixed);
g_{a b}::Metric;
g^{a b}::InverseMetric;
ex:=X_{a} g^{a b} g_{b c} g^{c d} g_{d e} g^{e f};
eliminate_metric(ex, repeat=True, redundant=True);
\(\displaystyle{}\text{Property Indices(position=fixed) attached to }\left[a, b, c, d, e, f\right].\)
\(\displaystyle{}\text{Property Metric attached to }g_{a b}.\)
\(\displaystyle{}\text{Property TableauSymmetry attached to }g^{a b}.\)
\(\displaystyle{}X_{a} g^{a b} g_{b c} g^{c d} g_{d e} g^{e f}\)
X_{a} g^{a b} g_{b c} g^{c d} g_{d e} g^{e f}
\(\displaystyle{}X_{e} g^{e f}\)
X_{e} g^{e f}
Without the
redundant=True
option, this would have reduced the
expression to $X^{f}$.