Cadabra
a field-theory motivated approach to computer algebra

reduce_delta

Simplify a self-contracted generalised delta.
Reduce a self-contracted generalised Kronecker delta symbol to a simpler expression without self-contractions, according to \begin{equation} n! \, \delta^{a_1\cdots a_n}_{b_1\cdots b_n}\, \delta^{b_1}_{a_1} \cdots \delta^{b_m}_{a_m} = \Big[\prod_{i=1}^m \big( d-(n-i) \big) \Big] \, (n-m)!\, \delta^{a_{m+1}\cdots a_n}_{b_{m+1}\cdots b_n}\, . \end{equation} Here is an example:
\delta{#}::KroneckerDelta; {m,n,q}::Integer(0..3); ex:=\delta_{m}^{n}_{n}^{q};
\(\displaystyle{}\text{Attached property KroneckerDelta to }\delta\left(\#\right).\)
\(\displaystyle{}\text{Attached property Integer to }\left(m, n, q\right).\)
\(\displaystyle{}\delta_{m}\,^{n}\,_{n}\,^{q}\)
reduce_delta(_);
\(\displaystyle{} - \frac{3}{2}\delta_{m}\,^{q}\)
Note that this requires that the indices on the Kronecker delta symbol also carry an Integer property to specify their range.
Copyright © 2001-2024 Kasper Peeters
Questions? info@cadabra.science