{t,r,\theta,\phi}::Coordinate;
{\mu, \nu, \tau, \gamma, \alpha, \beta, \kappa, \lambda}::Indices(values={t,r,\theta,\phi}, position=fixed);
\partial{#}::PartialDerivative;
g_{\mu\nu}::Metric;
g^{\mu\nu}::InverseMetric;
g_{\mu\nu}::Diagonal;
g^{\mu\nu}::Diagonal;
g^{\mu}_{\nu}::KroneckerDelta;
g_{\mu}^{\nu}::KroneckerDelta;
\nabla::Derivative;
\Phi::Depends(r);
\Lambda::Depends(r);
\rho::Depends(r);
p::Depends(r);
g := [
g_{t t} = -exp(2\Phi),
g_{r r} = exp(2\Lambda),
g_{\theta \theta} = r**2,
g_{\phi \phi} = (r*sin(\theta))**2
];
complete(g, $g^{\mu\nu}$);
u := [
u^t = exp(-\Phi),
u^r = 0,
u^\theta = 0,
u^\phi = 0
];
T := T^{\mu\nu} = (\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu};
For the provided code, how to get expresions for the energy-momentum tensoro components.
I tried to substitute(T,g); substitute(T,u); and evaluate(T) but I do not get any of the results by components.
Hhow to complete the set of components for the 4 velocity, such that expresion variable "u" will have [ u^\mu, u\mu ] components, by using the equation [ u\mu = g_{\mu\nu}u^{\nu} ]
How to evaluate the contracation of the 4-velocity vector and covector to check if it is normalized to -1 - thus howto carry the operation u^\mu u^\nu g_{\mu\nu}
version 2.2.20, build private dated 2018-08-07