{\mu,\nu,\rho,\sigma}::Indices(position=free).
 {a,b,c,d,i,j,k}::Indices(vector).
 x::Coordinate.
 \partial{#}::Derivative.
 f^{a b c}::AntiSymmetric.
 F^{i}_{\mu\nu}::Depends(x).
 A^{i}_{\mu}::Depends(x,\partial).  
 \delta{#}::Accent;
 S:= -1/4 \int{ F^{i}_{\mu \nu} F^{i \mu \nu} }{x};
 rl:= F^{a}_{\mu \nu}  -> \partial_{\mu}{A^{a}_{\nu}} - \partial_{\nu}{A^{a}_{\mu}} + g f^{a b c} A^{b}_{\mu} A^{c}_{\nu};
 substitute(S, rl);
After I make the substitution, the dummy indices will appear more than twice in the expression and after the
distribute(_)
It will raise an error that triple index b inside a single factor found.