After updating to v2.2.3, the following code
{\mu,\nu,\rho,\sigma}::Indices(vector).
{\partial{#}}::PartialDerivative.
connection := \Gamma^{\mu}_{\nu\rho} = 1/2 g^{\mu\sigma} ( \partial_{\rho}{g_{\nu\sigma}} + \partial_{\nu}{g_{\rho\sigma}} -\partial_{\sigma}{g_{\nu\rho}} );
will spit out
$$
\Gamma^{\mu}\,{\nu \rho} = \frac{1}{2}g^{\mu \sigma} \left(\partial{\rho}{g{\nu \sigma}} \oplus \partial{\nu}{g{\rho \sigma}}-\partial{\sigma}{g_{\nu \rho}}\right),
$$
it's wrong. And the following code
ex:=\sin(\varphi)**2 \sin(\theta)**2;
will give
$$
{\sin\left(\varphi\right)}^{2} {\left(\sin{\theta}\right)}^{2}
$$
the result is also strange.