Cadabra
Computer algebra system for field theory problems
Loading...
Searching...
No Matches
Public Member Functions | Private Member Functions | Private Attributes | List of all members
cadabra::evaluate Class Reference

#include <evaluate.hh>

Inheritance diagram for cadabra::evaluate:
cadabra::Algorithm cadabra::ExManip

Public Member Functions

 evaluate (const Kernel &, Ex &, const Ex &component_values, bool rhs=false, bool simplify=true)
 
virtual bool can_apply (iterator) override
 
virtual result_t apply (iterator &) override
 
void merge_components (iterator it1, iterator it2)
 Merge the information in two 'components' nodes at the given iterators, moving all out of the second one into the first one.
 
void simplify_components (iterator, bool run_sympy=true)
 Simplify all components of a 'components' node by collecting terms and optionally running sympy's simplify on them.
 
- Public Member Functions inherited from cadabra::Algorithm
 Algorithm (const Kernel &, Ex &)
 Initialise the algorithm with a reference to the expression tree, but do not yet do anything with this tree.
 
virtual ~Algorithm ()
 
void set_progress_monitor (ProgressMonitor *)
 Provide the algorithm with a ProgressMonitor object on which to register (nested) progress information, to be reported out-of-band to a client.
 
result_t apply_generic (bool deep=true, bool repeat=false, unsigned int depth=0)
 The main entry points for running algorithms, which traverse the tree post-order ('child before parent').
 
result_t apply_generic (iterator &, bool deep, bool repeat, unsigned int depth)
 
result_t apply_pre_order (bool repeat=false)
 Apply algorithm with alternative traversal: starting from the top node, traverse the tree pre-order ('parent before child') and once the algorithm acts at a given node, do not traverse the subtree below anymore.
 
bool check_consistency (iterator) const
 Given an expression top node, check index consistency.
 
bool check_index_consistency (iterator) const
 
bool check_degree_consistency (iterator) const
 Given an expression top node, check differential form degree consistency.
 
void report_progress (const std::string &, int todo, int done, int count=2)
 
index_iterator begin_index (iterator it) const
 
index_iterator end_index (iterator it) const
 
unsigned int number_of_indices (iterator it)
 
std::string get_index_set_name (iterator it) const
 
bool rename_replacement_dummies (iterator, bool still_inside_algo=false)
 Rename the dummies in the sub-tree starting with head at the given iterator.
 
Ex_set_t dependencies (iterator it, bool include_derivatives_of=true) const
 Determine all the Coordinate dependencies of the object at 'it'.
 
bool derivative_acts_on (iterator it) const
 Is this a symbol on which a derivative acts?
 
- Public Member Functions inherited from cadabra::ExManip
 ExManip (const Kernel &, Ex &)
 
bool prod_wrap_single_term (iterator &)
 Take a single non-product node in a sum and wrap it in a product node, so it can be handled on the same footing as a proper product.
 
bool prod_unwrap_single_term (iterator &)
 
bool sum_wrap_single_term (iterator &)
 
bool sum_unwrap_single_term (iterator &)
 
bool is_single_term (iterator)
 Is the indicated node a single term in an expression?
 
bool is_nonprod_factor_in_prod (iterator)
 
void force_node_wrap (iterator &, std::string)
 Wrap a term in a product or sum in a node with indicated name, irrespective of its parent (it usually makes more sense to call the safer prod_wrap_single_term or sum_wrap_single_term above).
 

Private Member Functions

bool is_component (iterator it) const
 
bool is_scalar_function (iterator it) const
 
iterator handle_components (iterator it)
 
iterator handle_sum (iterator it)
 
iterator handle_prod (iterator it)
 
iterator handle_derivative (iterator it)
 
iterator handle_epsilon (iterator it)
 
iterator handle_factor (sibling_iterator sib, const IndexClassifier::index_map_t &full_ind_free)
 Replace a single factor with a 'components' ... The full_ind_free argument can contain a list of indices in the order in which values should be stored in index value sets.
 
iterator dense_factor (iterator sib, const IndexClassifier::index_map_t &ind_free, const IndexClassifier::index_map_t &ind_dummy)
 Expand a tensor factor into a components node with all components written out explicitly.
 
void merge_component_children (iterator it)
 Merge entries in a single 'components' node when they are for the same index value(s).
 
void cleanup_components (iterator it1)
 Cleanup all components in a 'components' node; that is, call the cleanup_dispatch function on them.
 
iterator wrap_scalar_in_components_node (iterator sib)
 Wrap a non-component scalar node in a 'components' node.
 
void unwrap_scalar_in_components_node (iterator sib)
 Inverse of the above.
 

Private Attributes

const Excomponents
 
bool only_rhs
 
bool call_sympy
 

Additional Inherited Members

- Public Types inherited from cadabra::Algorithm
typedef std::set< Ex, tree_exact_less_objEx_set_t
 
typedef Ex::result_t result_t
 
- Public Types inherited from cadabra::ExManip
typedef Ex::iterator_base iterator_base
 
typedef Ex::iterator iterator
 
typedef Ex::post_order_iterator post_order_iterator
 
typedef Ex::sibling_iterator sibling_iterator
 
- Static Public Member Functions inherited from cadabra::Algorithm
static unsigned int number_of_indices (const Properties &, iterator it)
 
static unsigned int number_of_direct_indices (iterator it)
 
static bool is_termlike (iterator)
 Determines whether the indicated node is 'like a term in a sum'.
 
static bool is_factorlike (iterator)
 Determines whether the indicated node is 'like a factor in a product'.
 
static bool is_noncommuting (const Properties &, iterator)
 Generic function to determine if there is any kind of non-commutativity associated to the given object.
 
- Public Attributes inherited from cadabra::Algorithm
bool interrupted
 
unsigned int number_of_calls
 
unsigned int number_of_modifications
 
bool suppress_normal_output
 
bool discard_command_node
 
Stopwatch index_sw
 
Stopwatch get_dummy_sw
 
Stopwatch report_progress_stopwatch
 
- Protected Types inherited from cadabra::Algorithm
typedef std::pair< sibling_iterator, sibling_iteratorrange_t
 Finding objects in sets.
 
typedef std::vector< range_trange_vector_t
 
- Protected Member Functions inherited from cadabra::Algorithm
bool contains (sibling_iterator from, sibling_iterator to, sibling_iterator arg)
 
void find_argument_lists (range_vector_t &, bool only_comma_lists=true) const
 
template<class Iter >
range_vector_t::iterator find_arg_superset (range_vector_t &, Iter st, Iter nd)
 
range_vector_t::iterator find_arg_superset (range_vector_t &, sibling_iterator it)
 
unsigned int locate_single_object (Ex::iterator obj_to_find, Ex::iterator st, Ex::iterator nd, std::vector< unsigned int > &store)
 
bool locate_object_set (const Ex &objs, Ex::iterator st, Ex::iterator nd, std::vector< unsigned int > &store)
 
bool separated_by_derivative (iterator, iterator, iterator check_dependence) const
 Figure out whether two objects (commonly indices) are separated by a derivative operator, as in.
 
void pushup_multiplier (iterator)
 
template<class BinaryPredicate >
unsigned int intersection_number (sibling_iterator, sibling_iterator, sibling_iterator, sibling_iterator, BinaryPredicate) const
 Determine the number of elements in the first range which also occur in the second range.
 
void node_zero (iterator)
 
void node_one (iterator)
 
void node_integer (iterator, int)
 
- Static Protected Member Functions inherited from cadabra::Algorithm
static bool compare_ (const str_node &, const str_node &)
 
- Protected Attributes inherited from cadabra::Algorithm
ProgressMonitorpm
 
bool traverse_ldots
 
- Protected Attributes inherited from cadabra::ExManip
const Kernelkernel
 
Extr
 

Constructor & Destructor Documentation

◆ evaluate()

evaluate::evaluate ( const Kernel k,
Ex tr,
const Ex component_values,
bool  rhs = false,
bool  simplify = true 
)

Member Function Documentation

◆ apply()

Algorithm::result_t evaluate::apply ( iterator it)
overridevirtual

Implements cadabra::Algorithm.

◆ can_apply()

bool evaluate::can_apply ( iterator  it)
overridevirtual

Implements cadabra::Algorithm.

◆ cleanup_components()

void evaluate::cleanup_components ( iterator  it1)
private

Cleanup all components in a 'components' node; that is, call the cleanup_dispatch function on them.

◆ dense_factor()

Ex::iterator evaluate::dense_factor ( iterator  sib,
const IndexClassifier::index_map_t ind_free,
const IndexClassifier::index_map_t ind_dummy 
)
private

Expand a tensor factor into a components node with all components written out explicitly.

Used when there is no sparse rule matching this factor.

◆ handle_components()

Ex::iterator evaluate::handle_components ( iterator  it)
private

◆ handle_derivative()

Ex::iterator evaluate::handle_derivative ( iterator  it)
private

◆ handle_epsilon()

Ex::iterator evaluate::handle_epsilon ( iterator  it)
private

◆ handle_factor()

Ex::iterator evaluate::handle_factor ( sibling_iterator  sib,
const IndexClassifier::index_map_t full_ind_free 
)
private

Replace a single factor with a 'components' ... The full_ind_free argument can contain a list of indices in the order in which values should be stored in index value sets.

◆ handle_prod()

Ex::iterator evaluate::handle_prod ( iterator  it)
private

◆ handle_sum()

Ex::iterator evaluate::handle_sum ( iterator  it)
private

◆ is_component()

bool evaluate::is_component ( iterator  it) const
private

◆ is_scalar_function()

bool evaluate::is_scalar_function ( iterator  it) const
private

◆ merge_component_children()

void evaluate::merge_component_children ( iterator  it)
private

Merge entries in a single 'components' node when they are for the same index value(s).

◆ merge_components()

void evaluate::merge_components ( iterator  it1,
iterator  it2 
)

Merge the information in two 'components' nodes at the given iterators, moving all out of the second one into the first one.

◆ simplify_components()

void evaluate::simplify_components ( iterator  it,
bool  run_sympy = true 
)

Simplify all components of a 'components' node by collecting terms and optionally running sympy's simplify on them.

Returns a replacement iterator to the top. Removes entries for vanishing components.

◆ unwrap_scalar_in_components_node()

void evaluate::unwrap_scalar_in_components_node ( iterator  sib)
private

Inverse of the above.

◆ wrap_scalar_in_components_node()

Algorithm::iterator evaluate::wrap_scalar_in_components_node ( iterator  sib)
private

Wrap a non-component scalar node in a 'components' node.

Member Data Documentation

◆ call_sympy

bool cadabra::evaluate::call_sympy
private

◆ components

const Ex& cadabra::evaluate::components
private

◆ only_rhs

bool cadabra::evaluate::only_rhs
private

The documentation for this class was generated from the following files: