Cadabra
Computer algebra system for field theory problems
TableauSymmetry.hh
Go to the documentation of this file.
1 
2 #pragma once
3 
5 #include <vector>
6 
7 namespace cadabra {
8 
9  class TableauSymmetry : public TableauBase, virtual public property {
10  public:
11  virtual ~TableauSymmetry();
12 
13  virtual bool parse(Kernel&, keyval_t&) override;
14  virtual std::string name() const override;
15  virtual void latex(std::ostream&) const override;
16  virtual unsigned int size(const Properties&, Ex&, Ex::iterator) const override;
17  virtual tab_t get_tab(const Properties&, Ex&, Ex::iterator, unsigned int) const override;
18  virtual bool only_column_exchange() const override;
19 
20  std::vector<tab_t> tabs;
21 
22  private:
23  bool only_col_;
24  };
25 
26  }
Basic storage class for symbolic mathemematical expressions.
Definition: Storage.hh:142
Definition: Kernel.hh:15
Class holding a collection of properties attached to expressions.
Definition: Props.hh:237
Definition: TableauBase.hh:9
Definition: TableauSymmetry.hh:9
virtual void latex(std::ostream &) const override
Display the property on the stream.
Definition: TableauSymmetry.cc:93
virtual std::string name() const override
Definition: TableauSymmetry.cc:13
virtual unsigned int size(const Properties &, Ex &, Ex::iterator) const override
Definition: TableauSymmetry.cc:100
bool only_col_
Definition: TableauSymmetry.hh:23
virtual bool only_column_exchange() const override
Definition: TableauSymmetry.cc:111
virtual tab_t get_tab(const Properties &, Ex &, Ex::iterator, unsigned int) const override
Definition: TableauSymmetry.cc:105
virtual bool parse(Kernel &, keyval_t &) override
Definition: TableauSymmetry.cc:18
virtual ~TableauSymmetry()
Definition: TableauSymmetry.cc:9
std::vector< tab_t > tabs
Definition: TableauSymmetry.hh:20
Arguments to properties get parsed into a keyval_t structure.
Definition: Props.hh:68
Base class for all properties, handling argument parsing and defining the interface.
Definition: Props.hh:127
Functions to handle the exchange properties of two or more symbols in a product.
Definition: Adjform.cc:83