I wish to compute the explicit expression of $p^\alpha (\partial_\alpha F^{\mu\nu}) p_\nu$ (among others) where $p^\alpha$ is the four-momentum and $F^{\mu\nu}$ is the electromagnetic field tensor as a function of the electromagnetic fields $\boldsymbol{E}$ and $\boldsymbol{B}$. I use the Minkowski $(1,-1,-1,-1)$ metric.

Here's what I have tried:

```
{t,x,y,z}::Coordinate;
{\mu,\nu,\alpha}::Indices(values={t,x,y,z},position=fixed);
\partial{#}::PartialDerivative;
g_{\mu\nu}::Metric(signature=1);
F^{\mu\nu}::AntiSymmetric;
F^{\mu\nu}::Depends(t,x,y,z,\partial{#});
p_{\mu}::Depends(t,x,y,z,\partial{#});
Ex::Depends(t,x,y,z,\partial{#});
Ey::Depends(t,x,y,z,\partial{#});
Ez::Depends(t,x,y,z,\partial{#});
Bx::Depends(t,x,y,z,\partial{#});
By::Depends(t,x,y,z,\partial{#});
Bz::Depends(t,x,y,z,\partial{#});
px::Depends(t,x,y,z,\partial{#});
py::Depends(t,x,y,z,\partial{#});
pz::Depends(t,x,y,z,\partial{#});
ss:= { g_{t t} = 1, g_{x x} = -1, g_{y y} = -1, g_{z z} = -1}.
complete(ss, $g^{\mu\nu}$);
fieldtensor:= {F^{t x} = -Ex, F^{t y} = -Ey,F^{t z} = -Ez, F^{x y} = -Bz,F^{x z} = By,F^{y z} = -Bx,p^{t} = \gamma*m*c,p^{x} = px,p^{y} = py,p^{z} = pz,p_{t} = \gamma*m*c,p_{x} = -px,p_{y} = -py,p_{z} = -pz};
firstTerm:= f^{\mu} = p^{\alpha} \partial_{\alpha}{F^{\mu\nu}} p_{\nu};
substitute(firstTerm, fieldtensor);
```

However, this prints

and use of the `evaluate`

algorithm results in $f^\mu=0$.

What's the proper way to evaluating these components?