Welcome to Cadabra Q&A, where you can ask questions and receive answers from other members of the community.
0 votes

Hello, I found a peculiar effect of Young's projection when applied to part of an expression after using zoom. For example:

{a,b,c,d,f,e, m,n,k,l,q,r,s,t,u,v,w,x,y,z,m#, n#}::Indices(values={0..3}, position=independent);

\nabla{#}::Derivative.
h_{m? n?}::Metric.
h^{m? n?}::InverseMetric.
h_{m? n?}::Symmetric.
h^{m? n?}::Symmetric.
F_{a? b?}::AntiSymmetric.
F^{a? b?}::AntiSymmetric.
\nabla_{a}{F_{b c}}::TableauSymmetry(shape={2,1}, indices={0,1,2});
\nabla_{a}{\nabla_{b}{p}}::Symmetric;

and I have some long expression:

expr := 1/2 F_{a b} F_{c d} R \nabla_{e}(p) \nabla_{f}(p) h^{a c} h^{b e} h^{d f}
-F_{a b} F_{c d} \nabla_{e}(\nabla_{f}(p)) \nabla_{m}(\nabla_{n}(p)) h^{a c} h^{b e} h^{d f} h^{m n} 
+ F_{a b} F_{c d} \nabla_{e}(\nabla_{f}(p)) \nabla_{m}(\nabla_{n}(p)) h^{a c} h^{b e} h^{d m} h^{f n}
-F_{a b} F_{c d} R_{e f} \nabla_{m}(p) \nabla_{n}(p) h^{a e} h^{b m} h^{c f} h^{d n}
-2F_{a b} \nabla_{c}(F_{d e}) \nabla_{f}(\nabla_{m}(p)) \nabla_{n}(p) h^{a f} h^{b n} h^{c d} h^{e m} 
+ F_{a b} F_{c d} \nabla_{e}(\nabla_{f}(p)) \nabla_{m}(\nabla_{n}(p)) h^{a e} h^{b m} h^{c f} h^{d n} 
+ F_{a b} \nabla_{c}(F_{d e}) \nabla_{f}(\nabla_{m}(p)) \nabla_{n}(p) h^{a c} h^{b d} h^{e f} h^{m n};

And I want to simplify terms with \nabla{a}{F{b c}}:

zoom(expr, $Q?? \nabla_{a}{F_{b c}}$);
expr2 = take_match($@[expr2]$, $Q?? \nabla_{a}{F_{b c}}$);
canonicalise(young_project_product(expr2));

For expr I get - 4/3 F_{a b} \nabla_{c}(F_{d e}) \nabla_{f}(\nabla_{m}(p)) \nabla_{n}(p) h^{a f} h^{b n} h^{c d} h^{e m} but for expr2 I get

- 8/9 F_{a b} \nabla_{c}(F_{d e}) \nabla_{f}(\nabla_{m}(p)) \nabla_{n}(p) h^{a f} h^{b n} h^{c d} h^{e m}

in Bug reports by (1.8k points)

Please log in or register to answer this question.

...