Hello!

I've tryed to use meld function after it's upgrade and it looks very strange

minimal example with first brackets:

```
{a,b,c,d,e,f,g,h,i,j,k,l,m,n,q,r,s,u,v,w,z#}::Indices(full,values={t,x,y}, position=independent);
\partial{#}::PartialDerivative.
\nabla{#}::Derivative.
{\nabla{#},\partial{#}}::Commuting.
h_{m? n?}::Metric.
h^{m? n?}::InverseMetric.
h_{m? n?}::Symmetric.
h^{m? n?}::Symmetric.
X_{m? n?}::Depends(\nabla{#}, \partial{#}).
h_{m n}::Depends(\partial{#}).
h^{m n}::Depends(\partial{#}).
deth::Depends(\partial{#}).
K::Depends(\nabla{#}, \partial{#}).
KX::Depends(\nabla{#}, \partial{#}).
delh_{m n}::Depends(\nabla{#}, \partial{#}).
delh^{m n}::Depends(\nabla{#}, \partial{#}).
delpi::Depends(\nabla{#}, \partial{#}).
p::LaTeXForm("\pi").
KX::LaTeXForm("K_{X}").
delh^{m? n?}::LaTeXForm("\delta h^{", m? n?, "}").
\Dh::LaTeXForm("\sqrt{-h}").
ex:= \Dh delh^{a b} ( - 1/2 h_{a b} K \Box(p) + KX X_{a b} \Box(p)-K \nabla_{a}(\nabla_{b}(p))-2\nabla_{a}(K) \nabla_{b}(p));
meld(ex);
```