Hello people. I'm trying to solve Einstein's equations in vacuo for a generic line element, I can get to the equations G _ {\ alpha \ beta}, but I can't get the values for exp (\ mu) and \ exp (nu). If anyone knows thank you.

`enter code here`

{r,t,\phi,\theta}::Coordinate; {\mu,\nu,\rho,\sigma,\lambda,\kappa,\chi,\gamma}::Indices(values=t,r,\phi,\theta},position=fixed);

\partial{#}::PartialDerivative; g_{\mu\nu}::Metric; g^{\mu\nu}::InverseMetric;

v::Depends(r); u::Depends(r);

ss:={g*{t t} = \exp(v),
g*{r r} =-\exp(u),
g*{\theta\theta} = r**2,
g*{\phi\phi} = r**2 \sin(\theta)**2}.
complete(ss,$g^{\mu\nu}$);

ch := \Gamma^{\mu}*{\nu\rho} = 1/2 g^{\mu\sigma} (
\partial*{\rho}{g*{\nu\sigma}}
+\partial*{\nu}{g*{\rho\sigma}}
-\partial*{\sigma}{g_{\nu\rho}});
evaluate(ch,ss,rhsonly=True);

rm:= R^{\rho}*{\sigma\mu\nu} = \partial*{\mu}{\Gamma^{\rho}*{\nu\sigma}}
-\partial*{\nu}{\Gamma^{\rho}*{\mu\sigma}}
+\Gamma^{\rho}*{\mu\lambda}\Gamma^{\lambda}*{\nu\sigma}
-\Gamma^{\rho}*{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma};
substitute(rm,ch);
evaluate(rm,ss,rhsonly=True);

rc:= R*{\sigma\nu} = R^{\rho}*{\sigma\rho\nu};
substitute(rc, rm)
evaluate(rc, ss, rhsonly=True);

src:= R = g^{\sigma\nu}R_{\sigma\nu}; substitute(src,rc); evaluate(src,ss,rhsonly=True);

Eins := G*{\sigma\nu} = R*{\sigma\nu}-1/2g_{\sigma\nu}R;
substitute(Eins,rc);
substitute(Eins,src);
evaluate(Eins,ss,rhsonly=True);

from cdb.core.component import *
from cdb.core.manip import *

gtt = get_component(Eins,$t,t$)[1]; grr = get_component(Eins,$r,r$)[1]; gth = get_component(Eins,$\theta,\theta$)[1]; gph = get_component(Eins,$\phi,\phi$)[1];

from cdb.sympy.solvers import *

eq1:= @(gtt)-@(grr);

from sympy import *