Sure:
{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z#}::Indices(fourD, position=independent){a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z#}::Integer(0..3)
{\alpha,\beta,\gamma,\delta,\epsilon,\zeta,\theta,\iota,\kappa,\lambda,\mu,\nu,\rho,\sigma,\tau#}::Indices(threeD, position=independent, parent=fourD)
\gamma_{\alpha \beta}::Symmetric()
\gamma^{\alpha \beta}::Symmetric()
U^{\alpha \beta}::Symmetric()
dU^{\alpha \beta}::Symmetric()
\partial{#}::PartialDerivative()
U{#}::Depends(\partial{#})
dU{#}::Depends(\partial{#})
ex := \gamma_{\alpha \gamma} \gamma_{\beta \delta} \gamma^{\epsilon \zeta} \partial_{\epsilon \zeta}(U^{\alpha \beta}) dU^{\gamma \delta} + \gamma_{\alpha \gamma} \gamma^{\delta \epsilon} \gamma_{\beta \zeta} \partial_{\delta \epsilon}(U^{\alpha \beta}) dU^{\gamma \zeta} + \gamma^{\gamma \delta} \gamma_{\alpha \epsilon} \gamma_{\beta \zeta} \partial_{\gamma \delta}(U^{\alpha \beta}) dU^{\epsilon \zeta};