I would like to prove that the scalar action is dilatation invariant.
(m,n,p,q)::Indices(position=free).
\eta_{m n}::Metric.
\eta^{m n}::InverseMetric.
\eta^{m}_{n}::KroneckerDelta.
\eta_{n}^{m}::KroneckerDelta.
\partial{#}::PartialDerivative.
\phi::Depends(\partial{#}).
x^{m}::Depends(\partial{#}).
S := -1/2 \int{ \partial_{m}{\phi} \partial^{m}{\phi}}{x};
S:=−1/2∫∂mϕ∂mϕ dx;
\delta::Accent.
dil:= \delta{\phi}= \alpha x^{m} \partial_{m}{\phi} + \alpha \phi;
δϕ=αxm∂mϕ+αϕ;
vary(S, \$ \phi -> \delta{\phi} \$).
substitute(S,dil).
distribute(S).
product_rule(S).
unwrap(S);
−1/2∫((α∂mxn∂nϕ+αxn∂mnϕ)∂mϕ+α∂mϕ∂mϕ+∂mϕ(α∂mxn∂nϕ+αxn∂mnϕ)+∂mϕα∂mϕ)dx
Now how do I tell ∂mxn=ηmn without exploiting free index structure.
Does Cadabra understand that?
I tried to force it using a relation, but later Cadabra fails to identify indices as free.