Hellow everyone,
I am computing the Christoffel symbol for a specific Metric. At the end, I get the correct answer, but if you see below, the first two terms are the same but with opposite sign. I don't know why Cadabra does not allow to simplify the result.
{\alpha,\beta,\gamma,\delta,\mu,\nu,\rho,\sigma,\kappa,\lambda,\chi,\xi#}::Indices(full, position=fixed);
\nabla{#}::Derivative;
\partial{#}::PartialDerivative;
g_{\mu\nu}::Metric.
Christoffel:=g^{\lambda\kappa} ( \partial_{\nu}{ g_{\kappa\mu} }
+ \partial_{\mu}{ g_{\kappa\nu} } - \partial_{\kappa}{ g_{\mu\nu} } );
#Metric
substitute(_, $g_{\mu \nu} -> \partial_{\mu}{\gamma}\partial_{\nu}{\gamma}\exp^{(-\gamma)} $);
#Rule derivative of exponential function
product_rule(_);
substitute(_, $\partial_{\mu?}{\exp(-\gamma)} -> -\exp(-\gamma)\partial_{\mu?}{\gamma}$)
canonicalise(_);
simplify(_);
#Answer:
$g^{\lambda\kappa} ( \partial_{\nu\mu} \gamma \partial_{\kappa}\gamma \exp^{(-\gamma)} - \partial_{\kappa}\gamma \partial_{\nu\mu} \gamma \exp^{(-\gamma)} -2\partial_{\kappa}\gamma \partial_{\nu} \gamma \partial_{\mu} \gamma \exp^{(-\gamma)}+ \partial_{\kappa\nu} \gamma \partial_{\mu} \gamma \exp^{(-\gamma)})$
I would appreciate any help.
Xavier