Following is my complete code
{\mu,\nu,\alpha}::Indices("one").
{a,b,c}::Indices("two").
{\mu,\alpha,\nu}::Indices("three").
V^{\mu?\nu?}::AntiSymmetric.
\nabla{#}::Derivative.
{C^{\nu?\alpha?},V^{\mu?\nu?}}::Depends(\nabla{#}).
{C^{\nu?\alpha?},V^{\mu?\nu?}}::NonCommuting.
ex:=\int{\nabla^{\alpha}{{V^{\mu\nu} \nabla^{\mu}{C^{\alpha\nu}}};
product_rule(_);
substitute(_,$\nabla^{\alpha}{V^{\mu\nu}}->-\nabla^{\mu}{V^{\nu\alpha}}-\nabla^{\nu}{V^{\alpha\mu}}$);
distribute(_);
integrate_by_parts(_, $V^{\mu?\nu?}$);
canonicalise(_);
factor_out(_,$V^{\alpha?\mu?}$);
rename_dummies(_,"one","two");
rename_dummies(_,"two","three");
I want to make
Vαμ(−∇ν∇νCαμ−∇ν∇αCμν+∇ν∇αCνμ)=0
become
Vμν(∇α∇αCμν+∇α∇μCαν+∇α∇μCνα)=0
where Vμν is antisymmetric.