Cadabra Computer algebra system for field theory problems
canonicalise.hh
Go to the documentation of this file.
1 #pragma once
2
3 #include "Algorithm.hh"
4 #include "properties/Indices.hh"
5 #include <vector>
6
8
12
13  class canonicalise : public Algorithm {
14  public:
15  canonicalise(const Kernel&, Ex&);
16
17  virtual bool can_apply(iterator);
18  virtual result_t apply(iterator&);
19
20  std::vector<std::vector<int> > generating_set;
22
23  private:
24  // Sub-algorithms needed before going to the full fledged canonicaliser.
25  // All return true if they have modified the expression.
28  bool only_one_on_derivative(iterator index1, iterator index2) const;
29
31  // void collect_dummy_info(const index_map_t&, const index_position_map_t&,
32  // std::vector<int>&, std::vector<int>&);
33  };
34
35  }
Base class for all algorithms, containing generic routines and in particular the logic for index clas...
Definition: Algorithm.hh:59
Ex::iterator iterator
Definition: Algorithm.hh:70
Basic storage class for symbolic mathemematical expressions.
Definition: Storage.hh:142
result_t
Keeping track of what algorithms have done to this expression.
Definition: Storage.hh:161
position_t
Definition: Indices.hh:24
Definition: Kernel.hh:15
Canonicalise the index structure of a tensorial expression.
Definition: canonicalise.hh:13
bool remove_traceless_traces(iterator &)
Definition: canonicalise.cc:52
canonicalise(const Kernel &, Ex &)
Definition: canonicalise.cc:18
virtual result_t apply(iterator &)
Definition: canonicalise.cc:163
bool remove_vanishing_numericals(iterator &)
Definition: canonicalise.cc:113
bool only_one_on_derivative(iterator index1, iterator index2) const
Definition: canonicalise.cc:148
virtual bool can_apply(iterator)
Definition: canonicalise.cc:23
std::vector< std::vector< int > > generating_set
Definition: canonicalise.hh:20
bool reuse_generating_set
Definition: canonicalise.hh:21
Indices::position_t position_type(iterator) const
Definition: canonicalise.cc:140
Functions to handle the exchange properties of two or more symbols in a product.