
February 7, 2024

The Cadabra Book
A field-theory motivated approach to symbolic computer algebra

Kasper Peeters

This book is available under the terms of the GNU Free Documentation License, version 1.2.

The Cadabra software is available under the terms of the GNU General Public License, version 3.

Copyright © 2001-2023 Kasper Peeters

kasper.peeters@cadabra.science

mailto:kasper.peeters@cadabra.science

0
Contents

1 Introduction and overview 7
1.1 Bird’s eye overview . 7
1.2 Cadabra’s design philosophy . 7
1.3 History . 8

2 The input format 9
2.1 Input format . 9

2.1.1 Mathematical expressions . 9
2.1.2 Algorithms . 10

2.2 Printing expressions in various formats . 10
2.2.1 Basic usage . 10
2.2.2 Other output formats . 11
2.2.3 Printing custom LaTeX . 11

2.3 Object properties and declaration . 12
2.3.1 Generic properties . 12
2.3.2 List properties and symbol groups . 14
2.3.3 Querying properties . 14

2.4 Indices, dummy indices and automatic index renaming 15
2.5 Implicit versus explicit indices . 17

2.5.1 Converting between implicit and explicit 18

3 Mathematical properties 21
3.1 Derivatives and implicit dependence on coordinates 21

4 Manipulating expressions 23

3

4.1 Selecting parts of expressions . 23
4.1.1 Zooming into an expression . 23

4.2 Using multiple files and notebooks . 24
4.2.1 Importing a notebook into another one 24
4.2.2 Writing expressions to a file and reading them back 25

4.3 Default simplification . 26
4.4 Patterns, conditionals and regular expressions 27

4.4.1 Conditionals . 29
4.5 Numerical evaluation of expressions . 30

4.5.1 More complicated examples . 31
4.5.2 Supported elementary functions . 32

5 Writing your own packages 33
5.1 Programming in Cadabra . 33

5.1.1 Fundamental Cadabra objects: Ex and ExNode 33
5.1.2 ExNode and Python iterators . 34
5.1.3 Traversing the expression tree . 35
5.1.4 Arguments and indices . 37
5.1.5 Querying properties . 37
5.1.6 Expression pattern matching . 38
5.1.7 Example: covariant derivatives . 39

5.2 Using Cadabra directly from C++ . 40
5.2.1 Simple example . 40

6 Algorithms 43
6.1 Substitution and variation . 43

6.1.1 distribute . 43
6.1.2 product rule . 44
6.1.3 substitute . 45
6.1.4 vary . 46
6.1.5 expand power . 47
6.1.6 unwrap . 48
6.1.7 integrate by parts . 50

6.2 Metrics and bundles . 51
6.2.1 eliminate kronecker . 51
6.2.2 eliminate metric . 52
6.2.3 eliminate vielbein . 52
6.2.4 einsteinify . 53
6.2.5 epsilon to delta . 54
6.2.6 expand delta . 55
6.2.7 reduce delta . 57

6.3 Index manipulations . 57
6.3.1 combine . 57
6.3.2 explicit indices . 58
6.3.3 lower free indices . 59
6.3.4 raise free indices . 59
6.3.5 split index . 60
6.3.6 untrace . 61
6.3.7 rename dummies . 61
6.3.8 rewrite indices . 62
6.3.9 expand . 63

6.4 Tensor component values . 64
6.4.1 complete . 64
6.4.2 evaluate . 65

6.5 Factorisation . 66
6.5.1 factor in . 66
6.5.2 factor out . 66

6.6 Spinors and fermions . 67
6.6.1 expand diracbar . 67
6.6.2 fierz . 68
6.6.3 join gamma . 69
6.6.4 sort spinors . 70
6.6.5 split gamma . 70

6.7 Sorting and canonicalisation . 71
6.7.1 asym . 71
6.7.2 canonicalise . 72
6.7.3 young project product . 73
6.7.4 young project tensor . 73
6.7.5 meld . 74
6.7.6 sort product . 75
6.7.7 sort sum . 76

6.8 Weights and perturbations . 77
6.8.1 drop weight . 77
6.8.2 keep weight . 78

6.9 Simplification . 80
6.9.1 collect factors . 80
6.9.2 collect terms . 81
6.9.3 map sympy . 81
6.9.4 simplify . 82

6.10 Representations . 82
6.10.1 decompose . 82
6.10.2 decompose product . 83

6.10.3 lr tensor . 84
6.11 Sub-expression manipulation . 86

6.11.1 replace match . 86
6.11.2 take match . 86
6.11.3 zoom . 87

6

1
Introduction and overview

1.1 Bird’s eye overview
Cadabra is a symbolic computer algebra system (CAS) designed to solve problems in
physics, in particular (but not limited to) those which deal with classical and quantum
field theory. Its input format is a subset of TeX, which means that throughout your com-
putations the maths will all stay in a form which is hopefully already familiar to you. It
has a large number of facilities which make it easy to work with tensors, anti-commuting
objects, implicit indices, implicit coordinate dependence and so on; things which help to
keep mathematical expressions compact and readable, so that your notebooks resemble
what you would do with pen-and-paper.

Cadabra is at its core a Python module (written in C++ and exposed to Python using
pybind11), which also contains a pre-parser which turns Cadabra’s language into pure
Python. You can use through a command line client, a graphical notebook interface, or
via Jupyter through the Cadabra kernel. You can, if you want to, also use it from Python
directly, or as a C++ library.

1.2 Cadabra’s design philosophy
Cadabra is built around the fact that many computations do not have one single and unique
path between the starting point and the end result. When we do computations on paper,
we often take bits of an expression apart, do some manipulations on them, stick them back
into the main expression, and so on. Often, the manipulations that we do are far from
uniquely determined by the problem, and often there is no way even in principle for a
computer to figure out what is ’the best’ thing to do.

What we need the computer to do, in such a case, is to be good at performing simple but
tedious steps, without enforcing on the user how to do a particular computation. In other

7

words, we want the computer algebra system to be a scratchpad, leaving us in control of
which steps to take, not forcing us to return to a ’canonical’ expression at every stage.

Most existing computer algebra systems allow for this kind of work flow only by requiring
to stick clumsy ’inert’ or ’hold’ arguments onto expressions, by default always ’simplifying’
every input to some form they think is best. Cadabra starts from the other end of the
spectrum, and as a general rule keeps your expression untouched, unless you explicitly ask
for something to be done to it.

Another key issue in the design of symbolic computer algebra systems has always been
whether or not there should be a distinction between the ’data language’ (the language
used to write down mathematical expressions), the ’manipulation language’ (the language
used to write down what you want to do with those expressions) and the ’implementation
language’ (the language used to implement algorithms which act on mathematical expres-
sions). Many computer algebra systems take the approach in which these languages are
the same (Axiom, Reduce, Sympy) or mostly the same apart from a small core which uses
a different implementation language (Mathematica, Maple). The Cadabra project is rooted
in the idea that for many applications, it is better to keep a clean distinction between these
three languages. Cadabra writes mathematics using LaTeX, is programmable in Python,
and is under the hood largely written in C++.

1.3 History
Cadabra was originally written around 2001 to solve a number of problems related to
higher-derivative supergravity [1, 2]. It was then expanded and polished, and first saw
its public release in 2007 [3]. During the years that followed, it became clear that several
design decisions were not ideal, such as the use of a custom programming language and the
lack of functionality for component computations. Over the course of 2015-2016 a large
rewrite took place, which resulted in Cadabra 2.x [4]. This new version is programmable
in Python and does both abstract and component computations.

8

2
The input format

2.1 Input format

2.1.1 Mathematical expressions

The input format of Cadabra is closely related to the notation used by LaTeX to denote
tensorial expressions. That is, one can use not only bracketed notation to denote child
objects, like in

object[child,child]

but also the usual sub- and superscript notation like

object^{child child}_{child}

One can use backslashes in the names of objects as well, just as in LaTeX. All of the symbols
that one enters this way are considered “passive”, that is, they will go into the expression
tree just like one has entered them.

Expressions are entered by using the ‘:=’ operator, as in

ex:=A+B+C_{m} C^{m};

A+B + CmC
m

Expressions (the ‘ex’ above) are ordinary Python objects (of type cadabra2.Ex), and their
names can thus only contain normal alphanumeric symbols.

type(ex);

<class ’cadabra2.Ex’>

9

Lines always have to be terminated with either a “;” or a “:”. These delimiting symbols act
in the same way as in Maple: the second form suppresses the output of the entered expres-
sion. Long expressions can, because of these delimiters, be spread over many subsequent
input lines. Any line starting with a “#” sign is considered to be a comment (even when
it appears within a multi-line expression). Comments are always ignored completely (they
do not end up in the expression tree. When entering maths as above (using the ‘:=’ assign-
ment operator) you do not need to indicate that the right-hand side is mathematics. There
are situations, however, when you do need to give Cadabra a hint that what you type is
maths, not Python. In this case, you add dollar symbols, just as in LaTeX,

substitute($A + B + C$, $C -> D$);

A+B +D

As you can see, this uses an ‘inline’ definition of a mathematical expression, without giving
it a name.

2.1.2 Algorithms

Algorithms are ordinary Python functions, which act on cadabra2.Ex objects.

2.2 Printing expressions in various formats

2.2.1 Basic usage

With basic use of Cadabra, you will typically display your expressions by postfixing them
with a semi-colon, as in

ex:=A_{m n} (B^{n} + 3 C^{n});

Amn (B
n + 3Cn)

What happens behind the scenes is that the semi-colon gets translated to a call of display
on the last-entered expression. It is therefore equivalent to

display(ex)

Amn (B
n + 3Cn)

If you do not want to display the expression, post-fix with a colon, as in

ex:=A_{m n} (B^{n} + 3 C^{n}):

If you want to display an expression again later, you can just write the name of the expres-
sion followed by a semi-colon, or use the display function again,

ex;

display(ex)

Amn (B
n + 3Cn)

10

Amn (B
n + 3Cn)

Note that while it may be tempting to use print(ex), the display function is better be-
cause it knows about the capabilities of the interface used, and it will automatically select
a text output when you use Cadabra from the terminal, or LaTeX output when you use it
in the graphical notebook.

2.2.2 Other output formats

Cadabra expressions are standard Python objects, and as such they have a __str__ method
which converts them into a printable expression, and a __repr__ method to produce a
machine readable form. These are called by the standard str and repr Python functions,
as the examples below show.

print(str(ex))

\begin{verbatim}A_{m n} (B^{n} + 3C^{n})

\end{verbatim}

print(repr(ex))

\begin{verbatim}\prod(A_{m n})(\sum(B^{n})(3C^{n}))

\end{verbatim}

In addition there are some methods to obtain output useful in other software: Mathemat-
ica, LaTeX and Sympy:

print(ex.mma_form())

\begin{verbatim}A[DNm, DNn]*(B[UPn]+3*C[UPn])

\end{verbatim}

print(ex._latex_())

\begin{verbatim}A_{m n} \brwrap{(}{B^{n}+3C^{n}}{)}

\end{verbatim}

print(ex.sympy_form())

\begin{verbatim}A(DNm, DNn)*(B(UPn)+3*C(UPn))

\end{verbatim}

2.2.3 Printing custom LaTeX

If you want to make sure that a string which you have created ”by hand” will be processed
by LaTeX and display in typeset form, use the ‘LaTeXString‘ object. This is essentially a
normal string, but ”tagged” with the information that it contains LaTeX code.

s = LaTeXString(r"\int_{-\infty}^\infty␣\exp\brwrap{[}{␣-a␣x^2␣}{]}␣{\rm␣d}␣x")

;∫ ∞

−∞
exp

[
− ax2

]
dx

11

2.3 Object properties and declaration

2.3.1 Generic properties

Symbols in Cadabra have no a-priori “meaning”. If you write \Gamma, the program will not
know that it is supposed to be, for instance, a Clifford algebra generator. You will have to
declare the properties of symbols, i.e. you have to tell Cadabra explicitly that if you write
\Gamma, you actually mean a Clifford algebra generator. This indirect way of attaching a
meaning to a symbol has the advantage that you can use whatever notation you like; if you
prefer to write \gamma, or perhaps even \rho if your paper uses that, then this is perfectly
possible (object properties are a bit like “attributes” in Mathematica or “domains” in Axiom

and MuPAD).

Properties are all written using capitals to separate words, as in AntiSymmetric. This
makes it easier to distinguish them from commands. Properties of objects are declared by
using the “::” characters. This can be done “at first use”, i.e. by just adding the property to
the object when it first appears in the input. As an example, one can write

F_{m n p}::AntiSymmetric;

Attached property AntiSymmetric to Fmnp.

This declares the object to be anti-symmetric in its indices. The property information is
stored separately, so that further appearances of the “F_{m n p}” object will automatically
share this property. A list of all properties is available from the manual pages on the web
site.

Note that properties are attached to patterns, Therefore, you can have

R_{m n}::Symmetric;

R_{m n p q}::RiemannTensor;

Attached property Symmetric to Rmn.

Attached property TableauSymmetry to Rmnpq.

at the same time. The program will not warn you if you use incompatible properties, so if
you make a declaration like above and then later on do

R_{m n}::AntiSymmetric;

Attached property AntiSymmetric to Rmn.

this may lead to undefined results. The fact that objects are attached to patterns also means
that you can use something like wildcards. In the following declaration,

{m#, n#}::Indices(vector);

Attached property Indices(position=free) to [m#, n#] .

12

the entire infinite set of objects m1,m2,m3, . . . and n1, n2, n3, . . . are declared to be in the
dummy index set “vector” (this way of declaring ranges of objects is similar to the “autode-
clare” declaration method of FORM). Properties can be assigned to an entire list of symbols
with one command, namely by attaching the property to the list. For example,

{n, m, p, q}::Integer(1..d);

Attached property Integer to [n, m, p, q] .

This associates the property “Integer” to each and every symbol in the list. However, there
is also a concept of “list properties”, which are properties which are associated to the list as
a whole. Examples of list properties are “AntiCommuting” or “Indices”. Objects can have
more than one property attached to them, and one should therefore not confuse properties
with the “type” of the object. Consider for instance

x::Coordinate;

W_{m n p q}::WeylTensor;

W_{m n p q}::Depends(x);

Attached property Coordinate to x.

Attached property TableauSymmetryWeylTensor to Wmnpq.

Attached property Depends to Wmnpq.

This attaches two completely independent properties to the pattern Wmnpq. In the exam-
ples above, several properties had arguments (e.g. “vector” or “1..d”). The general form
of these arguments is a set of key-value pairs, as in

T_{m n p q}::TableauSymmetry(shape={2,1}, indices={0,2,1});

Attached property TableauSymmetry to Tmnpq.

In the simple cases discussed so far, the key and the equal sign was suppressed. This is
allowed because one of the keys plays the role of the default key. Therefore, the following
two are equivalent,

{ m, n }::Integer(range=0..d);

{ m, n }::Integer(0..d);

Attached property Integer to [m, n] .

Attached property Integer to [m, n] .

See the detailed documentation of the individual properties for allowed keys and the one
which is taken as the default. Finally, there is a concept of “inherited properties”. Consider
e.g. a sum of spinors, declared as

{\psi_1, \psi_2, \psi_3}::Spinor;

ex:= \psi_1 + \psi_2 + \psi_3;

13

Attached property Spinor to [ψ1, ψ2, ψ3] .

ψ1 + ψ2 + ψ3

Here the sum has inherited the property “Spinor”, even though it does not have normal or
intrinsic property of this type. Properties can also inherit from each other, e.g.

\Gamma_{#}::GammaMatrix.

ex:=\Gamma_{p o i u y};

Γpoiuy

canonicalise(_);

− Γiopuy

The GammaMatrix property inherits from AntiSymmetric property, and therefore the
\Gamma object is automatically anti-symmetric in its indices. indices.

2.3.2 List properties and symbol groups

Some properties are not naturally associated to a single symbol or object, but have to
do with collections of them. A simple example of such a property is AntiCommuting. Al-
though it sometimes makes sense to say that “ψm is anticommuting” (meaning that ψmψn =
−ψnψm), it happens just as often that you want to say “ψ and χ anticommute” (meaning
that ψχ = −χψ). The latter property is clearly relating two different objects.

Another example is dummy indices. While it may make sense to say that “m is a dummy
index”, this does not allow the program to substitute m with another index when a clash of
dummy index names occurs (e.g. upon substitution of one expression into another). More
useful is to say that “m, n, and p are dummy indices of the same type”, so that the program
can relabel a pair of m’s into a pair of p’s when necessary.

In Cadabra such properties are called “list properties”. You can associate a list property to
a list of symbols by simply writing, e.g. for the first example above,

{ \psi, \chi }::AntiCommuting;

Attached property AntiCommuting to [ψ, χ] .

Note that you can also attach normal properties to multiple symbols in one go using this
notation. The program will figure out automatically whether you want to associate a nor-
mal property or a list property to the symbols in the list.

Lists are ordered, although the ordering does not necessarily mean anything for all list
properties (it is relevant for e.g. SortOrder but irrelevant for e.g. AntiCommuting).

2.3.3 Querying properties

For many built-in algorithms, assigning properties to the objects which appear in your
expressions will be enough to make them work. However, sometimes you may want to ex-

14

plicitly query whether a particular symbol has a particular property. The following example
shows how this works.

A_{m n}::Symmetric;

if Symmetric.get($A_{m n}$):
print("A_{m␣n}␣is␣symmetric.")

if AntiSymmetric.get($A_{m n}$):
print("A_{m␣n}␣is␣anti-symmetric.")

Property Symmetric attached to Amn.

\begin{verbatim}A_{m n} is symmetric.

\end{verbatim}

The object returned by Property.get(...) is either None or the property which you asked
about. It is possible to do something with that property, e.g. attach it to another symbol.
In the example below, we start off with one tensor with a symmetry, and then attach it to
another symbol.

A_{m n p}::TableauSymmetry(shape={1,1}, indices={1,2});

p = TableauSymmetry.get($A_{m n p}$)
p.attach($B_{m n p}$)
ex:= B_{m n p} - B_{m p n};

canonicalise(_);

Property TableauSymmetry attached to Amnp.

Bmnp −Bmpn

2Bmnp

2.4 Indices, dummy indices and automatic index renaming
In Cadabra, all objects which occur as subscripts or superscripts are considered to be “in-
dices”. The names of indices are understood to be irrelevant when they occur in a pair,
and automatic relabelling will take place whenever necessary in order to avoid index
clashes.

Cadabra knows about the differences between free and dummy indices. It checks the input
for consistency and displays a warning when the index structure does not make sense.
Thus, the input

ex:= A_{m n} + B_{m} = 0;

will results in an error message. The location of indices is, by default, not considered to be
relevant. That is, you can write

{m, n}::Indices(name="free");

ex:=A_{m} + A^{m};

15

Attached property Indices(position=free) to [m, n] .

Am +Am

as input and these are considered to be consistent expressions. You can collect such terms
by using lower_free_indices or raise_free_indices,

lower_free_indices(ex);

2Am

If, however, the position of an index means something (like in general relativity, where
index lowering and raising implies contraction with a metric), then you can declare index
positions to be “fixed”. This is done using

{a,b,c,d,e,f}::Indices(name="fixed", position=fixed);

Attached property Indices(position=fixed) to [a, b, c, d, e, f] .

Cadabra will raise or lower indices on such expressions to a canonical form when the
canonicalise algorithm is used,

ex:= G_{a b} F^{a b} + G^{a b} F_{a b};

canonicalise(_);

GabF
ab +GabFab

2GabFab

If upper and lower indices should remain untouched at all times, there is a third index
position type, called ‘independent’,

{q,r,s}::Indices(name="independent", position=independent);

ex:= G_{q r} F^{q r} + G^{q r} F_{q r};

canonicalise(_);

Attached property Indices(position=independent) to [q, r, s] .

GqrF
qr +GqrFqr

GqrF
qr +GqrFqr

As the last line shows, the index positions have remained unchanged. When substitut-
ing an expression into another one, dummy indices will automatically be relabelled when
necessary. To see this in action, consider the following example:

ex:= G_{a b} Q;

rl:= Q-> F_{a b} F^{a b};

substitute(ex, rl);

GabQ

16

Q→ FabF
ab

GabFcdF
cd

The a and b indices have automatically been relabelled to c and d in order to avoid a conflict
with the free indices on the Gab object. You may have noticed that when you write T_{a b}

the ‘a b’ in the subscript is not interpreted as a product, but rather as two different indices
to the tensor T .

2.5 Implicit versus explicit indices
When writing expressions which involves vectors, spinors and matrices, one often employs
an implicit notation in which some or all of the indices are suppressed. Examples are

a =Mb , ψγmχ ,

where a and b are vectors, ψ and χ are spinors and M and γm are matrices. Clearly, the
computer cannot know this without some further information. In Cadabra objects can
carry implicit indices, through the ImplicitIndex property. There are derived forms of
this, e.g. Matrix and Spinor. The following example shows how implicit indices ensure
that objects do not get moved through each other when sorting expressions.

{a,b}::ImplicitIndex;

M::Matrix;

ex:= a = M b;

sort_product(_);

Attached property ImplicitIndex to [a, b] .

Attached property Matrix to M.

a =Mb

a =Mb

If you had not made the property assignment in the first two lines, the sort_product would
have incorrectly swapped the matrix and vector, leading to a meaningless expression.

If you have more than one set of implicit indices, it is best to use a form of ImplicitIndex
which makes explicit which indices are suppressed. In the following example, we write
consider the expression Mcb in which M is a matrix acting on the vector b, while c is a
different matrix which does not act on the same vector space. In other words, we consider
M i

jc
m

nb
j . Clearly we can also write this as Mbc, which is indeed what sort_product

converts it to.

{i,j}::Indices(vector);

{m,n}::Indices(spinor);

M::ImplicitIndex(M^{i}_{j});

17

b::ImplicitIndex(b^{i});

c::ImplicitIndex(c^{m}_{n});

Attached property Indices(position=free) to [i, j] .

Attached property Indices(position=free) to [m, n] .

Attached property ImplicitIndex to M.

Attached property ImplicitIndex to b.

Attached property ImplicitIndex to c.

ex:= M c b;

Mcb

sort_product(_);

Mbc

Such explicit property information is also respected by operators like Trace. The following
example shows how to remove objects from traces when they do not carry any indices on
which the trace acts.

Tr{#}::Trace(indices=vector);

ex:= Tr(M c M);

untrace(_);

Attached property Trace to Tr (#) .

T r (McM)

cTr (MM)

2.5.1 Converting between implicit and explicit

It is possible to convert from implicit indices to explicit indices, that is, make Cadabra
write out all implicit indices explicitly. For this to work you need to have declared an
ImplicitIndex property which lists the explicit indices of the object. Cadabra will then
take care of creating index lines.

{i,j,k}::Indices;

a::ImplicitIndex(a^{i});

M::ImplicitIndex(M^{i}_{j});

ex:= M a;

Attached property Indices(position=free) to [i, j, k] .

Attached property ImplicitIndex to a.

Attached property ImplicitIndex to M.

18

Ma

explicit_indices(ex);

M i
ja

j

Note how dummy indices were introduced automatically.

19

20

3
Mathematical properties

3.1 Derivatives and implicit dependence on coordinates
There is no fixed notation for derivatives; as with all other objects you have to declare
derivatives by associating a property to them, in this case the Derivative property.

\nabla{#}::Derivative;

Attached property Derivative to ∇#.

Derivative objects can be used in various ways. You can just write the derivative symbol,
as in

ex:=\nabla{ A_{\mu} };

∇Aµ

Or you can write the coordinate with respect to which the derivative is taken,

s::Coordinate;

A_{\mu}::Depends(s);

ex:=\nabla_{s}{ A_{\mu} };

Attached property Coordinate to s.

Attached property Depends to Aµ.

∇sAµ

Finally, you can use an index as the subscript argument, as in

{ \mu, \nu }::Indices(vector);

ex:=\nabla_{\nu}{ A_{\mu} };

Attached property Indices(position=free) to [µ, ν] .

21

∇νAµ

(in which case the first line is, for the purpose of using the derivative operator, actually un-
necessary). The main point of associating the Derivative property to an object is to make
the object obey the Leibnitz or product rule, as illustrated by the following example,

\nabla{#}::Derivative;

ex:= \nabla{ A_{\mu} * B_{\nu} };

product_rule(_);

Attached property Derivative to ∇#.

∇ (AµBν)

∇AµBν +Aµ∇Bν

This behaviour is a consequence of the fact that Derivative derives from Distributable.
Note that the Derivative property does not automatically give you commuting deriva-
tives, so that you can e.g. use it to write covariant derivatives. More specific derivative
types exist too. An example are partial derivatives, declared using the PartialDerivative

property. Partial derivatives are commuting and therefore automatically symmetric in their
indices,

\partial{#}::PartialDerivative;

{a,b,m,n}::Indices(vector);

C_{m n}::Symmetric;

ex:=T^{b a} \partial_{a b}(C_{m n} D_{n m});

Attached property PartialDerivative to ∂#.

Attached property Indices(position=free) to [a, b, m, n] .

Attached property Symmetric to Cmn.

T ba∂ab (CmnDnm)

canonicalise(_);

T ab∂ab (CmnDmn)

22

4
Manipulating expressions

4.1 Selecting parts of expressions
In many other computer algebra systems, you can select parts of results using the mouse,
paste them into a new input cell, and then continue the computation. Naively this sounds
like a nice feature to have, and it is indeed quite useful for quick computations. However,
for larger projects, this feature quickly becomes a major source of trouble. Once you use
the cut-n-paste technique, you are no longer able to make any changes in cells before the
one with pasted content. Or rather, you can make changes, but they will not automatically
propagate to into the pasted cell. Any effect of the change at the top of the notebook
will have to be evaluated until the point of the cut-n-paste, and then you have to do the
cut-n-paste again by hand.

Now this is fine if you just do a quick computation, as you will probably know precisely
what you want to cut-n-paste. But if you give your notebook to someone else, this may no
longer be clear. Worse, if you do not look at your notebook for some time, and then return
after a few months (or years), you will most likely have forgotten completely what was the
logic for the particular cut.

For this reason, Cadabra does not support cut-n-paste of output. But that does not mean
that you cannot select parts of expressions for subsequent computation. For that, Cadabra
has a more systematic logic, which is built around the zoom and unzoom commands.

4.1.1 Zooming into an expression

If you have a large expression, and want to select a part of it for further manipulation,
while temporarily ignoring the rest, use the zoom command. It takes an expression and a
pattern, and then suppresses all terms in the expression which do not match the pattern.
An example:

23

ex:= \int{ c A + c**2 B + c D + c**2 A }{x};

∫ (
cA+ c2B + cD + c2A

)
dx

zoom(_, $c Q??$);

∫
(cA+ . . .+ cD + . . .) dx

This has selected all terms with a single factor of c, and suppressed the other ones (but
keeping a reminder that those terms are still there, in the form of the dots). You can now
work on the visible terms as usual, e.g. doing a substitution,

substitute(_, $A -> E$);

∫
(cE + . . .+ cD + . . .) dx

In order to get back to the full expression, use unzoom,

unzoom(_);

∫ (
cE + c2B + cD + c2A

)
dx

As you can see, the substitution has only changed the terms which were visible at the
time.

4.2 Using multiple files and notebooks
At some point, you will encounter computations which are best separated out into their
own notebook. Or you will do a computation which takes a long time, and you want to
write an intermediate result into a file so that you can read it back later easily. There
are two options for this in Cadabra: importing notebooks into other notebooks, or writing
individual expressions to a file and reading them back.

4.2.1 Importing a notebook into another one

The simplest way to separate functionality is to simply write a separate notebook with the
properties and expressions which you want to re-use elsewhere. In this way, writing a
‘package’ for Cadabra is nothing else but writing a separate notebook. You can import any
notebook into another one by using the standard Python import logic.

24

Example

Let us say we have a notebook library.cnb, which contains a single cell with the following
content:

{m,n,p,q,r}::Indices;

ex:=A_{q r} A_{q r};

You can now import this into another notebook by simply using

from library import *

Cadabra looks for the library.cnb notebook in your PYTHONPATH (just as in ordinary
Python programs), as well as in the current directory. You can see that this worked by
e.g. the following:

ex;

rename_dummies(ex);

AqrAqr

AmnAmn

Note that the import has thus not only imported the ex expression, but also the property
information about the index set, which enabled the rename_dummies to work. Behind the
scenes, what happens is that the import statement looks for a file library.cnb. If it finds
this, it will first convert that file to a proper Python file (remember the library.cnb file is
a Cadabra notebook, not a Python file). It then uses the standard Python logic to do the
import.

4.2.2 Writing expressions to a file and reading them back

A somewhat more difficult way to re-use expressions is to write them to a file using stan-
dard Python methods, and then read them back elsewhere. This method is best used for
long computations of which you want to write an intermediate result out to disk, to be
read in later (instead of doing a re-computation). Be aware that if you write an expression
to disk, you do not write the property information of any of the symbols in that expression
to disk.

Example

The following example declares two expressions and writes them to disk. It then reads the
expressions back in again and assigns them to different Python names.

ex1:= A_{m n} \sin{x};

ex2:= B_{m n};

with open("output.cdb", "w") as file:

file.write(ex1.input_form()+"\n")

file.write(ex2.input_form()+"\n")

25

Amn sinx

Bmn

with open("output.cdb", "r") as file:

ex3=Ex(file.readline())

ex4=Ex(file.readline())

ex3;

ex4;

Amn sinx

Bmn

Note that when written in this way, the file output.cdb only contains the expressions, not
their names (ex1 and ex2 in the example above). Cadabra’s expressions can also be written
to disk using Python’s pickle functionality. This makes the code slightly less messy, but note
that the file will no longer be human-readable. If you use the pickle module, the example
above would read:

import pickle

ex1:= A_{m n} \sin{x};

ex2:= B_{m n};

with open("output.pkl", "wb") as file:

pickle.dump(ex1, file)

pickle.dump(ex2, file)

Amn sinx

Bmn

with open("output.pkl", "rb") as file:

ex3=pickle.load(file)

ex4=pickle.load(file)

ex3;

ex4;

Amn sinx

Bmn

4.3 Default simplification
By default, Cadabra does very few things “by itself” with your expressions. It only collects
equal terms, but even that can be turned off if you want to. The logic is that all simplifica-
tion steps are contained in a function post_process, which is executed on every new input
and on every completion of an algorithm. It can contain arbitrary code, but by default it
reads

26

def post_process(ex):

collect_terms(ex)

which simply collects equal terms. You can for instance apply a substitution on every input
automatically,

def post_process(ex):

distribute(ex)

substitute(ex, $A_{m n} -> B_{m q} B_{q n}$)
collect_terms(ex)

{m,n,p,q}::Indices(vector);

A_{m n}::Symmetric;

ex:=A_{m n} (A_{n m} + C_{n m});

Attached property Indices(position=free) to [m, n, p, q] .

Attached property Symmetric to BmqBqn.

BmqBqnBnpBpm +BmqBqnCnm

As usual dummy indices have been relabelled appropriately. The post_process function
can be redefined on-the-fly in the middle of a notebook.

4.4 Patterns, conditionals and regular expressions
Patterns in Cadabra are quite a bit different from those in other computer algebra systems,
because they are more tuned towards the pattern matching of objects common in tenso-
rial expressions, rather than generic tree structures. Cadabra knows about three different
pattern types: name patterns (for single names), object patterns (for things which include
indices and arguments) and dummy patterns (things for which the name is irrelevant, like
indices).

Name patterns are things which match a single name in an object, without indices or
arguments. They are constructed by writing a single question mark behind the name, as
in

ex:= Q + R;

substitute(_, $A? + B? -> 0$);

Q+R

0

which matches all sums with two terms, each of which is a single symbol without indices or
arguments. If you want to match instead any object, with or without indices or arguments,
use the double question mark instead. To see the difference more explicitly, compare the
two substitute commands in the following example

27

ex:=A_{m n} + B_{m n};

substitute(_, $A? + B? -> 0$);

substitute(_, $A?? + B?? -> 0$);

Amn +Bmn

Amn +Bmn

0

Note that it does not make sense to add arguments or indices to object patterns; a con-
struction of the type A??_{\mu}(x) is meaningless and will be flagged as an error.

There is a special handling of objects which are dummy objects. Objects of this type do
not need the question mark, as their explicit name is never relevant. You can therefore
write

ex:= A_{m n};

substitute(_, $A_{p q}->0$);

Amn

0

to set all occurrances of the tensor A with two subscript indices to zero, regardless of the
names of the indices (as you can see, this command sets Apq to zero). When index sets
are declared using the Indices property, these will be taken into account when matching.
When replacing object wildcards with something else that involves these objects, use the
question mark notation also on the right-hand side of the rule. For instance,

ex:= C + D + E + F;

substitute(_, $A? + B? -> A? A?$, repeat=True);

C +D + E + F

CC + EE

replaces every consecutive two terms in a sum by the square of the first term. The following
example shows the difference between the presence or absence of question marks on the
right-hand side:

ex:= C + D;

substitute(_, $A? + B? -> A?$);

C

ex:= C + D;

substitute(_, $A? + B? -> A A$);

AA

28

So be aware that the full pattern symbol needs to be used on the right-hand side (in
contrast to many other computer algebra systems).

Note that you can also use patterns to remove or add indices or arguments, as in

{\mu, \nu, \rho, \sigma}::Indices(vector);

ex:= A_{\mu} B_{\nu} C_{\nu} D_{\mu};

substitute(_, $A?_{\rho} B?_{\rho} -> \dot{A?}{B?}$, repeat=True);

Attached property Indices(position=free) to [µ, ν, ρ, σ] .

AµBνCνDµ

A ·DB · C

4.4.1 Conditionals

In many algorithms, patterns can be supplemented by so-called conditionals. These are
constraints on the objects that appear in the pattern. In the example below, the substitution
is not carried out, as the rule applies only to patterns where the n and p indices are not
equal,

ex:= A_{m n} B_{n q};

substitute(_, $ A_{m n} B_{p q} | n != p -> 0$);

AmnBnq

AmnBnq

AmnBnq

Without the conditional, the substitution does apply,

ex:= A_{m n} B_{n q};

substitute(_, $ A_{m n} B_{p q} -> 0$);

AmnBnq

0

Note that the conditional follows directly after the pattern, not after the full substitution
rule. A way to think about this is that the conditional is part of the pattern, not of the
rule. The reason why the conditional follows the full pattern, and not directly the symbol
to which it relates, is clear from the example above: the conditional is a “global” constraint
on the pattern, not a local one on a single index.

These conditions can be used to match names of objects using regular expressions. In the
following example, the pattern M? will match against C7,

ex:= A + B3 + C7;

substitute(_, $A + M? + N? | \regex{M?}{"[A-Z]7"} -> \sin(M? N?)/N?$);

29

A+B3 + C7

sin (C7B3)B3−1

Without the condition, the first match of M? would be against B3,

ex:= A + B3 + C7;

substitute(_, $A + M? + N? -> \sin(M? N?)/N?$);

A+B3 + C7

sin (B3C7)C7−1

4.5 Numerical evaluation of expressions
Cadabra is primarily a symbolic computer algebra system, in the sense that it focuses on
symbolic expressions, not the numerical value they take when all symbols in them are
replaced with values. However, Cadabra does have functionality to evaluate expressions
numerically as well, using either a call through SymPy, or using its own internal expression
evaluator. We will here focus on the latter, as it is by far the fastest.

Let us start with a simple example to understand the basics. The following code creates a
Cadabra expression containing just cos(x), and then numerically evaluates that expression
for 100 values of x in the range [0, 2π].

import numpy as np

import matplotlib.pyplot as plt

ex := \cos(x);

xv = np.linspace(0, np.pi*2, 100)

exv = nevaluate(ex, {x: xv});

cosx

<cadabra2.NTensor object at 0xffffaf7f11b0>

The nevaluate function returns an NTensor, which is Cadabra’s object to store numerical
values of tensors. It can be converted to a numpy array by wrapping it in ‘np.array‘, after
which you can plot it:

plt.plot(xv, np.array(exv));

30

[]
To understand nevaluate, take a close look at the arguments. The first argument is the

expression we want to evaluate. The second argument is a dictionary, in wich we list the
symbols appearing in the expression (here just x) and the values that each such symbol
takes (here it’s the values in the array xv).

4.5.1 More complicated examples

The example above evaluated a function of a single variable over a range of values of that
variable. We can also use this to evaluate functions of multiple variables. The example
below shows this.

ex:= \cos(x) \sin(y);

xv = np.linspace(0, np.pi, 100)

yv = np.linspace(0, np.pi, 100)

z = np.array(nevaluate(ex, {x: xv, y: yv}))

cosx sin y

The z variable is now a two-dimensional array, the first axis of which is the x-axis and the
second the y-axis (more on this order below). We can plot such a data set by creating a
meshgrid from the x and y values, and then feeding the lot into plot_surface:

XV, YV=np.meshgrid(xv, yv)

plt.figure(figsize=(20, 10))

ax = plt.axes(projection=’3d’)

plt.figure().subplots_adjust(top=1, bottom=0, left=0, right=1, wspace=0)

ax.plot_surface(XV, YV, z, rstride=1, cstride=1, cmap=’terrain’, edgecolor=None

);

31

The order in which the axis of the result of nevaluate should be interpreted is determined
by the order in which you list them in the values dictionary. Compare the following:

z1 = np.array(nevaluate(ex, {x: xv, y: yv}))

z2 = np.array(nevaluate(ex, {y: yv, x: xv}))

z1[10,20];

z2[10,20];

0.5633046988744114

0.2512712531759243

4.5.2 Supported elementary functions

At present the nevaluate function supports expressions with the following building blocks:
multiplication/division, addition/subtraction, trigonometric functions, hyperbolic trigono-
metric functions, logarithms, exponential, square root.

32

5
Writing your own packages

5.1 Programming in Cadabra
Cadabra is fully programmable in Python. At the most basic level this means that you
can make functions which combine various Cadabra algorithms together, or write loops
which repeat certain Cadabra algorithms. At a more advanced level, you can inspect the
expression tree and manipulate individual subexpressions, or construct expressions from
elementary building blocks.

5.1.1 Fundamental Cadabra objects: Ex and ExNode

The two fundamental Cadabra objects are the Ex and the ExNode. An object of type Ex

represents a mathematical expression, and is what is generated if you type a line containing
:=, as in

ex:=A+B;

type(ex);

A+B

<class ’cadabra2.Ex’>

An object of type ExNode is best thought of as an iterator. It can be used to walk an
expression tree, and modify it in place (which is somewhat different from normal Python
iterators; a point we will return to shortly). The most trivial way to get an iterator is to call
the top member of an Ex object; think of this as returning a pointer to the topmost node
of an expression,

ex.top();

type(ex.top());

A + B

33

<class ’cadabra2.ExNode’>

You will also encounter ExNodes when you do a standard Python iteration over the elements
of an Ex, as in

for n in ex:

type(n);

display(n)

<class ’cadabra2.ExNode’>

A + B

<class ’cadabra2.ExNode’>

A

<class ’cadabra2.ExNode’>

B

As you can see, this ‘iterates’ over the elements of the expression, but in a perhaps some-
what unexpected way. We will discuss this in more detail in the next section. Important to
remember from the example above is that the ‘pointers’ to the individual elements of the
expression are ExNode objects. There are various other ways to obtain such pointers, using
various types of ‘filtering’, more on that below as well.

Once you have an ExNode pointing to a subexpression in an expression, you can query it
further for details about that subexpression.

ex:= A_{m n};

for i in ex.top().free_indices():

display(i)

Amn

m

n

The example above shows how, starting from an iterator which points to the top of the
expression, you can get a new iterator which can iterate over all free indices.

5.1.2 ExNode and Python iterators

Before we continue, we should make a comment on how ExNode objects relate to Python
iterators. For many purposes, ExNode objects behave as you expect from Python iterators:
they allow you to loop over nodes of an Ex expression, you can call next(...) on them,
and so on. However, there are some slight differences, which have to do with the fact that
Cadabra wants to give you access to the nodes of the original Ex, so that you can modify

34

this original Ex in place. Consider for instance this example with a Python list of integers,
with standard iterators:

q=[1,2,3,4,5];

for element in q:

element=0

q;[
1, 2, 3, 4, 5

] [
1, 2, 3, 4, 5

]
It still produces the original list at the end of the day, because

each element is a copy of the element in the list. With ExNodes you can actually modify
the original Ex, as this example shows:

ex:=A + B + C + D;

for element in ex.top().terms():

element.replace(Q)
ex;

A+B + C +D

Q+Q+Q+Q

In this case, element is not an Ex corresponding to each of the 5 terms, but rather an
ExNode, which is more like a pointer into the Ex object. The replace member function
allows you to replace the building blocks of the original ex expression.

If you want to get a proper Ex object (so a copy of the element in the expression over which
you are iterating), more like what you would get if iteration over Cadabra’s expressions
was an ordinary Python iteration, then you can use ExNode.ex():

ex:= A + 2 B + 3 C + 4 D;

lst=[]

for element in ex.top().terms():

lst.append(element.ex())

ex;

lst[2];

A+ 2B + 3C + 4D

A+ 2B + 3C + 4D

3C

Here the list lst contains copies of the individual terms of the ex expression.

A good way to remember about this is to keep in mind that Cadabra tries its best to allow
you to modify expressions in-place. The ExNode iterators provide that functionality.

5.1.3 Traversing the expression tree

The ExNode iterator can be instructed to traverse expressions in various ways. The most
basic iterator is obtained by using standard Python iteration with a for loop,

35

ex:= A + B + C_{m} D^{m};

A+B + CmD
m

for n in ex:

print(str(n))

\begin{verbatim}A + B + C_{m} D^{m}

A

B

C_{m} D^{m}

C_{m}

m

D^{m}

m

\end{verbatim}

The iterator obtained in this way traverses the expression tree node by node, and when you
ask it to print what it is pointing to, it prints the entire subtree of the node it is currently
visiting. If you are only interested in the name of the node, not the entire expression below
it, you can use the .name member of the iterator:

for n in ex:

print(str(n.name))

\begin{verbatim}\sum

A

B

\prod

C

m

D

m

\end{verbatim}

Often, this kind of ‘brute force’ iteration over expression elements is not very useful. A
more powerful iterator is obtained by asking for all nodes in the subtree which have a
certain name. This can be the name of a tensor, or the name of a special node, such as a
product or sum,

for n in ex["C"]:

display(n)

C_{m}

for n in ex["\\prod"]:

display(n)

C_{m} D^{m}

36

The above two examples used an iterator obtained directly from an Ex object. Various
ways of obtaining iterators over special nodes can be obtained by using member functions
of ExNode objects themselves. So one often uses a construction in which one first asks for
an iterator to the top of an expression, and then requests from that iterator a new one
which can iterate over various special nodes. The example below obtains an iterator over
all top-level terms in an expression, and then loops over its values.

for n in ex.top().terms():

display(n)

A

B

C_{m} D^{m}

Two special types of iterators are those which iterate only over all arguments or only over
all indices of a sub-expression. These are discussed in the next section.

5.1.4 Arguments and indices

There are various ways to obtain iterators which iterate over all arguments or all indices
of an expression. The following example, with a derivative acting on a product, prints the
argument of the derivative as well as all free indices.

\nabla{#}::Derivative;

ex:= \nabla_{m}{ A^{n}_{p} V^{p} };

Attached property Derivative to ∇#.

∇m (An
pV

p)

for nabla in ex[r’\nabla’]:

for arg in nabla.args():

print(str(arg))

for i in nabla.free_indices():

print(str(i))

\begin{verbatim}A^{n}_{p} V^{p}

m

n

\end{verbatim}

5.1.5 Querying properties

Properties which you attach to patterns can be queried in Python, though the functionality
is somewhat limited. In order to query a pattern for a particular property, use the property’s
name together with the get method. An example:

A_{m n}::AntiSymmetric.

p1 = AntiSymmetric.get($A_{m n}$)

37

p1;

Property AntiSymmetric attached to Amn.

p2 = Symmetric.get($A_{m n}$)
p2;

None

Some properties, like ‘Weight‘ have an associated value. You can access these with the
appropriate member function, so for this particular example you would do

x::Weight(value=42, label=field);

Weight.get(x, label="field").value("field");

Property Weight attached to x.

42

5.1.6 Expression pattern matching

If you want to check whether an expression matches a particular pattern, use the match

function of the Ex object. By default this is rather strict, requiring that indices match not
only their type but also their name.

{m, n, k, l}::Indices(vector).

{a, b, c, d}::Indices(spinor).

$A_{m n}$.matches($A_{k l}$);

True

$A_{m n}$.matches($A_{m n}$);

True

$A_{m n}$.matches($A_{k l}$);

True

$A_{m n}$.matches($A_{a b}$);

False

Wildcard symbols will match any symbol,

$A_{m? n?}$.matches($A_{k l}$);
$A_{m? n?}$.matches($A_{a b}$);

True

True

$A??$.matches($A_{k l}$);

True

38

5.1.7 Example: covariant derivatives

The following example shows how you might implement the expansion of a covariant
derivative into partial derivatives and connection terms.

def expand_nabla(ex):

for nabla in ex[r’\nabla’]:

nabla.name=r’\partial’

dindex = nabla.indices().__next__()

for arg in nabla.args():

ret:=0;

for index in arg.free_indices():

t2:= @(arg);

if index.parent_rel==sub:

t1:= -\Gamma^{p}_{@(dindex) @(index)};

t2[index]:= _{p};

else:

t1:= \Gamma^{@(index)}_{@(dindex) p};

t2[index]:= ^{p};

ret += Ex(str(nabla.multiplier)) * t1 * t2

nabla += ret

return ex

The sample expressions below show how this automatically takes care of not introducing
connections for dummy indices, and how it automatically handles indices which are more
complicated than single symbols.

\nabla{#}::Derivative;

ex:= 1/2 \nabla_{a}{ h^{b}_{c} };

expand_nabla(ex);

Attached property Derivative to ∇#.

1

2
∇ah

b
c

1

2
∂a

(
hb c

)
+

1

2
Γb

aph
p
c −

1

2
Γp

ach
b
p

ex:= 1/4 \nabla_{a}{ v_{b} w^{b} };

expand_nabla(ex);

1

4
∇a

(
vbw

b
)

1

4
∂a

(
vbw

b
)

ex:= \nabla_{\hat{a}}{ h_{b c} v^{c} };

39

expand_nabla(ex);

∇â (hbcv
c)

∂â (hbcv
c)− Γp

âbhpcv
c

5.2 Using Cadabra directly from C++
It is possible to use the functionality of Cadabra directly from C++ code, without dealing
with the Python layer on top of it, and without using the notebook interface. The library is
called cadabra2++ and building and installation instructions are provided in the project’s
README. Here we describe how to use this library.

5.2.1 Simple example

Basic use of the Cadabra C++ library consists of five parts: creating a kernel, inserting
object properties into the kernel, defining expressions, acting with algorithms on those
expressions, and displaying the result. A minimal example is as follows:

#include "cadabra2++.hh"

#include <iostream>

using namespace cadabra;

using namespace cadabra::cpplib;

int main() {

Kernel k(true);

inject_property<AntiCommuting>(k, "{A,B}");

auto ex = "A␣B␣-␣B␣A"_ex(k);

sort_product sp(k, *ex);

sp.apply_generic();

collect_terms(k, *ex);

sp.apply_generic();

std::cout << pprint(k, ex) << std::endl;

}

The output of this program is 2 A B.

Most of the above should be fairly easy to understand for anyone who has worked with
the Python interface to Cadabra before. Note how properties are attached to objects using
the inject_property function call. This takes the kernel as argument, as well as a textual
expression of what you would use in the Python interface.

Algorithms are C++ objects, which you need to instantiate, and then run explicitly by
calling the apply_generic function. As in the Python version, algorithms act in-place
(mostly), and the ex expression above thus changes as the code progresses.

40

Finally, the expression is printed by using the ‘pprint‘ function. This is necessary because
printing requires information stored in the Cadabra kernel.

41

42

6
Algorithms

6.1 Substitution and variation

6.1.1 distribute

Distribute factors over sums.

Rewrite a product of sums as a sum of products, as in

a (b+ c) → a b+ a c .

This would read

ex:=a (b+c);

distribute(_);

a (b+ c)

ab+ ac

The algorithm in fact works on all objects which carry the Distributable property,

Op{#}::Distributable;

ex:=Op(A+B);

distribute(_);

Attached property Distributable to Op (#) .

Op (A+B)

Op (A) +Op (B)

43

The primary example of a property which inherits the Distributable property is
PartialDerivative. The distribute algorithm thus also automatically writes out par-
tial derivatives of sums as sums of partial derivatives,

\partial{#}::PartialDerivative;

ex:=\partial_{m}{A + B + C};

distribute(_);

Attached property PartialDerivative to ∂#.

∂m (A+B + C)

∂mA+ ∂mB + ∂mC

6.1.2 product rule

Apply the Leibnitz rule to a derivative of a product

Apply the product rule or “Leibnitz identity” to an object which has the Derivative prop-
erty, i.e.

D{#}::Derivative;

ex:=D(f g);

product_rule(_);

Attached property Derivative to D#.

D (fg)

Dfg + fDg

This of course also works for derivatives which explicitly mention indices or components,
as well as for multiple derivatives, as in the example below.

D{#}::Derivative.

ex:=D_{m n}(f g);

Dmn (fg)

product_rule(_);

Dm (Dnfg + fDng)

distribute(_);

Dm (Dnfg) +Dm (fDng)

product_rule(_);

DmDnfg +DnfDmg +DmfDng + fDmDng

44

6.1.3 substitute

Generic substitution algorithm.

Generic substitution algorithm. Takes a rule or a set of rules according to which an expres-
sion should be modified. If more than one rule is given, it tries each rule in turn, until the
first working one is encountered, after which it continues with the next node.

ex:=G_{\mu \nu \rho} + F_{\mu \nu \rho};

substitute(_, $F_{\mu \nu \rho} -> A_{\mu \nu} B_{\rho}$);

Gµνρ + Fµνρ

Gµνρ +AµνBρ

ex:= A_{\mu \nu} B_{\nu \rho} C_{\rho \sigma};

substitute(_, $A_{m n} C_{p q} -> D_{m q}$);

AµνBνρCρσ

DµσBνρ

This command takes full care of dummy index relabelling, as the following example
shows:

{m,n,q,r,s,t,u}::Indices(vector).

ex:= a_{m} b_{n};

ambn

substitute(_, $a_{q} -> c_{m n} d_{m n q}$);

cqrdqrmbn

By postfixing a name with a question mark, it becomes a pattern. You do not need this
for indices (as the examples above show) but it is necessary for other types of function
arguments.

ex:= \sin{ x }**2 + 3 + \cos{ x }**2;

substitute(ex, $\sin{A?}**2 + \cos{A?}**2 = 1$);

sinx2 + 3 + cosx2

4

Substitute can match sub-products and sub-sums, and you do not have to specify terms or
factors in the order in which they appear,

ex:= A + B + C + D;

substitute(_, $A+C=Q$);

A+B + C +D

45

Q+B +D

ex:= A B C D;

substitute(_, $B D = Q$);

ABCD

AQC

However, you can request that the match is for the full sum or product,

ex:= A B C D + A B C D E F;

substitute(_, $A B C D = 1$, partial=False);

ABCD +ABCDEF

1 +ABCDEF

It will respect non-commuting objects and will not match if that would require moving
non-commuting objects through each other,

{Q,R,S,T}::NonCommuting;

ex:= Q R S T;

substitute(_, $S Q = 1$);

Attached property NonCommuting to [Q, R, S, T] .

QRST

QRST

6.1.4 vary

Generic variation algorithm for functional derivatives.

Generic variation command. Takes a rule or a set of rules according to which the terms in
a sum should be varied. In every term, apply the rule once to every factor.

ex:= A B + A C;

vary(_, $A -> \epsilon D, B -> \epsilon C, C -> \epsilon A - \epsilon B$);

AB +AC

ϵDB +AϵC + ϵDC +A (ϵA− ϵB)

It also works when acting on powers, in which case it will use the product rule to expand
them.

ex:= A**3;

vary(_, $A -> \delta{A}$);

46

A3

3A2δ (A)

This algorithm is thus mostly intended for variational derivatives.

\partial{#}::PartialDerivative;

ex:= -\int{\partial_{\mu}{\phi} \partial^{\mu}{\phi} + m**2 \phi**2}{x};

Attached property PartialDerivative to ∂#.

−
∫ (

∂µϕ∂
µϕ+m2ϕ2

)
dx

vary(ex, $\phi -> \delta{\phi}$);

−
∫ (

∂µδ (ϕ)∂
µϕ+ ∂µϕ∂

µδ (ϕ) + 2m2ϕδ (ϕ)
)
dx

integrate_by_parts(ex, $\delta{\phi}$);

−
∫ (

− δ (ϕ) ∂µ
µϕ− ∂µ µϕδ (ϕ) + 2m2ϕδ (ϕ)

)
dx

canonicalise(_)

sort_product(_);

−
∫ (

− 2δ (ϕ) ∂µ µϕ+ 2δ (ϕ)ϕm2
)
dx

factor_out(_, $\delta{\phi}$);

−
∫
δ (ϕ)

(
− 2∂µ µϕ+ 2ϕm2

)
dx

6.1.5 expand power

Expand powers into repeated products

Expand powers into repeated products, i.e. do the opposite of collect_factors. For ex-
ample,

ex:=(A B)**3;

(AB)3

expand_power(_);

ABABAB

47

sort_product(_);

AAABBB

collect_factors(_);

A3B3

This command automatically takes care of index relabelling when necessary, as in the
following example

{m,n,p,q,r}::Indices(vector).

ex:= (A_m B_m)**3;

(AmBm)3

expand_power(_);

AmBmAnBnApBp

6.1.6 unwrap

Move objects out of derivatives, accents or exterior products.

Move objects out of Derivatives, Accents or exterior (wedge) products when they do not
depend on these operators. The most basic example is Accents, which will get removed
from objects which do not depend on them, as in the following example:

\hat{#}::Accent;

\hat{#}::Distributable;

B::Depends(\hat);

ex:=\hat{A+B+C};

Attached property Accent to #̂.

Attached property Distributable to #̂.

Attached property Depends to B.

̂A+B + C

distribute(_);

Â+ B̂ + Ĉ

unwrap(_);

B̂

48

Derivatives will be set to zero if an object inside does not depend on it. All objects which
are annihilated by the derivative operator are moved to the front (taking into account
anti-commutativity if necessary),

\partial{#}::PartialDerivative;

{A,B,C,D}::AntiCommuting;

x::Coordinate;

{B,D}::Depends(\partial{#});

Attached property PartialDerivative to ∂#.

Attached property AntiCommuting to [A, B, C, D] .

Attached property Coordinate to x.

Attached property Depends to [B, D] .

ex:=\partial_{x}{A B C D};

∂x (ABCD)

unwrap(_);

−AC∂x (BD)

Note that a product remains inside the derivative; to expand that use product_rule. Here
is another example:

\del{#}::LaTeXForm("\partial").

\del{#}::Derivative;

X::Depends(\del{#});

ex:=\del{X*Y*Z};

Attached property Derivative to ∂#.

Attached property Depends to X.

∂ (XY Z)

product_rule(_);

∂XY Z +X∂Y Z +XY ∂Z

unwrap(_);

∂XY Z

Note that all objects are by default constants for the action of Derivative operators. If
you want objects to stay inside derivative operators you have to explicitly declare that they
depend on the derivative operator or on the coordinate with respect to which you take a
derivative.

49

The final case where unwrap acts is when exterior products contain factors which are
scalars (or forms of degree zero). The following example shows this.

{f,g}::DifferentialForm(degree=0).

{V, W}::DifferentialForm(degree=1).

{V,g}::AntiCommuting;

foo := f V ^ W g;

Attached property AntiCommuting to [V, g] .

(fV) ∧ (Wg)

unwrap(_);

− fgV ∧W

As this example shows, unwrap takes into account commutativity properties (hence the
sign flip).

6.1.7 integrate by parts

Integrate by parts away from the indicated expression

Integrate by parts. This requires an expression with an object carrying a Derivative prop-
erty. The algorithm should be given an expression that any derivatives should be integrated
away from. An example makes this more clear:

\partial{#}::PartialDerivative;

ex:= \int{ \partial_{m}{ A } B C D }{x};

Attached property PartialDerivative to ∂#.∫
∂mABCD dx

integrate_by_parts(_, A);

−
∫
A∂m (BCD) dx

product_rule(_);

−
∫
A (∂mBCD +B∂mCD +BC∂mD) dx

distribute(_);

−
∫

(A∂mBCD +AB∂mCD +ABC∂mD) dx

50

Note that integrate_by_parts only does the formal manipulation of moving the deriva-
tive around. If you want to discard derivatives of objects which are constant, you need
to use the Depends property to indicate on which coordinates or derivatives objects de-
pend, and the unwrap algorithm to eliminate derivatives of constants, as in the following
lines.

{B,D}::Depends(\partial);

Attached property Depends to (B,D) .

unwrap(ex);

−
∫

(A∂mBCD +ABC∂mD) dx

6.2 Metrics and bundles

6.2.1 eliminate kronecker

Eliminate Kronecker delta symbols.

Eliminates Kronecker delta symbols by performing index contractions. Also replaces con-
tracted Kronecker delta symbols with the range over which the index runs, if known.

\delta_{m n}::KroneckerDelta.

ex:=A_{m p} \delta_{p q} B_{q n};

eliminate_kronecker(_);

AmpδpqBqn

AmqBqn

The index range is set as usual with Integer,

{m,n,p,q}::Integer(0..d-1).

\delta_{m n}::KroneckerDelta.

ex:=\delta_{p q} \delta_{p q};

eliminate_kronecker(_);

δpqδpq

d

In order to eliminate metric factors (i.e. to ‘raise’ and ’lower’ indices) use the algorithm
eliminate_metric.

51

6.2.2 eliminate metric

Eliminate metrics by raising or lowering indices.

Eliminate metric and inverse metric objects by raising or lowering indices.

{m, n, p, q, r}::Indices(vector, position=fixed).

{m, n, p, q, r}::Integer(0..9).

g_{m n}::Metric.

g^{m n}::InverseMetric.

g_{m}^{n}::KroneckerDelta.

g^{m}_{n}::KroneckerDelta.

ex:=g_{m p} g^{p m};

eliminate_metric(_);

gmpg
pm

gp p

eliminate_kronecker(_);

10

Related algorithms are eliminate_kronecker and eliminate_vielbein. It is sometimes
useful to eliminate only those metrics which have two dummy indices (so as to avoid
changing indices on non-metric factors), as in the following example:

{a,b,c,d,e,f}::Indices(position=fixed);

g_{a b}::Metric;

g^{a b}::InverseMetric;

ex:=X_{a} g^{a b} g_{b c} g^{c d} g_{d e} g^{e f};

eliminate_metric(ex, repeat=True, redundant=True);

Property Indices(position=fixed) attached to [a, b, c, d, e, f] .

Property Metric attached to gab.

Property TableauSymmetry attached to gab.

Xag
abgbcg

cdgdeg
ef

Xeg
ef

Without the redundant=True option, this would have reduced the expression to Xf .

6.2.3 eliminate vielbein

Eliminates vielbein objects.

52

Indices of one type can be converted to another type by using a vielbein or inverse vielbein
object.

{ m, n, p }::Indices(flat).

{ \mu, \nu, \rho }::Indices(curved).

e^{m}_{\mu}::Vielbein.

ex:= H_{m n p} e^{m}_{\mu} e^{p}_{\rho};

eliminate_vielbein(_, repeat=True);

Hmnpe
m

µe
p
ρ

Hµnρ

This is similar to eliminate_metric.

6.2.4 einsteinify

Raise or lower indices of pairs which are both upper or lower.

In an expression containing dummy indices at the same position (i.e. either both subscripts
or both superscripts), raise or lower one of the indices.

ex:= A_{m} A_{m};

einsteinify(_);

AmAm

AmAm

ex:= A^{m} A^{m};

einsteinify(_);

AmAm

AmA
m

If an additional argument is given to this algorithm, it instead inserts “inverse metric”
objects, with the name as indicated by the additional argument.

{m,n}::Indices.

ex:= A_{m} A_{m};

einsteinify(_, η);

AmAm

AmAnη
mn

ex:= A^{m} A^{m};

einsteinify(_, η);

AmAm

53

AmAnη
mn

Note that the second form requires that there are enough dummy indices defined through
the use of Indices.

6.2.5 epsilon to delta

Replace a product of two epsilon tensors with a generalised delta

Replace a product of two epsilon tensors with a generalised delta according to the expres-
sion

ϵr1···rdϵs1···sd =
1√
|g|
εr1···rd

√
|g|εs1···sd = sign(g) d! δr1···rds1···sd , (6.1)

where sign(g) denotes the signature of the metric g used to raise/lower the indices (see
EpsilonTensor for conventions on the epsilon tensor). When the indices are not ocurring
up/down as in this expression, and the index position is not free, metric objects will be
generated instead.

Here is an example:

{a,b,c,d}::Indices.

{a,b,c,d}::Integer(1..3).

\delta{#}::KroneckerDelta.

\epsilon_{a b c}::EpsilonTensor(delta=\delta).

ex:=\epsilon_{a b c} \epsilon_{a b d};

ϵabcϵabd

epsilon_to_delta(_);

2δcd

Remember that if the result is a generalised delta, you can expand it in terms of normal
deltas using expand_delta,

ex:=\epsilon_{a b c} \epsilon_{a d e};

epsilon_to_delta(_);

expand_delta(_);

ϵabcϵade

2δbdce

δbdδce − δcdδbe

54

In order for this algorithm to work, you need to make sure that the epsilon symbols in
your expression are declared as EpsilonTensor and that these declarations involve a spec-
ification of the delta and/or metric symbols. As you can see from this example, con-
tracted indices inside the generalised delta are automatically eliminated, as the algorithm
reduce_gendelta is called automatically; if you do not want this use the optional argu-
ment reduce=False.

ex:=\epsilon_{a b c} \epsilon_{a b d};

epsilon_to_delta(_, reduce=False);

ϵabcϵabd

6δaabbcd

Note that the results typically depend on the signature of the space-time, which can be in-
troduced through the optional metric argument of the EpsilonTensor property. Compare
the two examples below:

{a,b,c,d}::Indices.

{a,b,c,d}::Integer(1..3).

\delta{#}::KroneckerDelta.

\epsilon_{a b c}::EpsilonTensor(delta=\delta, metric=g_{a b}).

g_{a b}::Metric(signature=-1).

ex:=\epsilon_{a b c} \epsilon_{a b c};

ϵabcϵabc

epsilon_to_delta(_);

− 6

g_{a b}::Metric(signature=+1).

ex:=\epsilon_{a b c} \epsilon_{a b c};

epsilon_to_delta(_);

ϵabcϵabc

6

Note that you need to specify the full symbol for the metric, including the indices, whereas
the Kronecker delta argument only requires the name without the indices (because a
contraction can generate generalised Kronecker delta symbols with any number of in-
dices).

6.2.6 expand delta

Expand generalised Kronecker delta symbols

55

In Cadabra the KroneckerDelta property indicates a generalised Kronecker delta symbol.
In order to expand it into standard two-index Kronecker deltas, use expand_delta, as in
the example below.

\delta{#}::KroneckerDelta;

Attached property KroneckerDelta to δ (#) .

ex:=\delta^{a}_{b}^{c}_{d};

δa b
c
d

expand_delta(_);

1

2
δa bδ

c
d −

1

2
δc bδ

a
d

ex:=\delta^{a}_{m}^{l}_{n} \delta_{a}^{c}_{b}^{d};

δa m
l
nδa

c
b
d

expand_delta(_);

distribute(_);

eliminate_kronecker(_);

canonicalise(_);(
1

2
δa mδ

l
n − 1

2
δl mδ

a
n

)(
1

2
δa

cδb
d − 1

2
δb

cδa
d

)
1

4
δa mδ

l
nδa

cδb
d − 1

4
δa mδ

l
nδb

cδa
d − 1

4
δl mδ

a
nδa

cδb
d +

1

4
δl mδ

a
nδb

cδa
d

1

4
δl nδm

cδb
d − 1

4
δl nδb

cδm
d − 1

4
δl mδn

cδb
d +

1

4
δl mδb

cδn
d

1

4
δb

dδc mδ
l
n − 1

4
δb

cδd mδ
l
n − 1

4
δb

dδc nδ
l
m +

1

4
δb

cδd nδ
l
m

Note that it is in principle possible to get a result similar to the expanded form by using
the Young projector and then canonicalising, but this is more expensive:

ex:=\delta^{a}_{b}^{c}_{d};

δa b
c
d

young_project_tensor(_);

δa b
c
d

56

6.2.7 reduce delta

Simplify a self-contracted generalised delta.

Reduce a self-contracted generalised Kronecker delta symbol to a simpler expression with-
out self-contractions, according to

n! δa1···anb1···bn δ
b1
a1 · · · δ

bm
am =

[m∏
i=1

(
d− (n− i)

)]
(n−m)! δ

am+1···an
bm+1···bn . (6.2)

Here is an example:

\delta{#}::KroneckerDelta;

{m,n,q}::Integer(0..3);

ex:=\delta_{m}^{n}_{n}^{q};

Attached property KroneckerDelta to δ (#) .

Attached property Integer to (m,n, q) .

δm
n
n
q

reduce_delta(_);

− 3

2
δm

q

Note that this requires that the indices on the Kronecker delta symbol also carry an Integer

property to specify their range.

6.3 Index manipulations

6.3.1 combine

Combine two consecutive indexbracket objects

Combine two consecutive objects with indexbrackets and consecutive contracted indices
into one object with an indexbracket. An example with two contracted matrices:

ex:=(\Gamma_r)_{\alpha\beta} (\Gamma_{s t u})_{\beta\gamma};

combine(_);

(Γr) αβ (Γstu) βγ

(ΓrΓstu) αγ

57

An example with a matrix and a vector:

ex:=(\Gamma_r)_{\alpha\beta} v_{\beta};

combine(_);

(Γr) αβvβ

(Γrv) α

The inverse of combine is expand.

6.3.2 explicit indices

Make indices explicit on an expression with implicit indices.

In Cadabra you can write expressions which are understood to have indices suppressed,
in order to get a cleaner notation. This is often used for vector/matrix notation, or
when dealing with spinors. In order to inform Cadabra about these implicit indices, you
use the ImplicitIndex property (which is also necessary to prevent Cadabra from mov-
ing these objects through each other when sorting products into canonical form). The
explicit_indices algorithm can then make these indices explicit, which can sometimes
make them easier to work with, for example when doing substitutions. In the following ex-
ample we define two sets of indices, and several objects which are assumed to have implicit
indices.

{m,n,p}::Indices(spacetime, position=fixed);

{a,b,c,d,e,f,g,h}::Indices(spinor, position=fixed);

\sigma^{p}::ImplicitIndex(\sigma^{p a}_{b});

\psi::ImplicitIndex(\psi_{a});

\chi::ImplicitIndex(\chi^{a});

Attached property Indices(position=fixed) to [m, n, p] .

Attached property Indices(position=fixed) to [a, b, c, d, e, f, g, h] .

Attached property ImplicitIndex to σp.

Attached property ImplicitIndex to ψ.

Attached property ImplicitIndex to χ.

The following is a valid expression for a spinor bilinear,

ex:= \psi \sigma^{m} \sigma^{n} \chi;

ψσmσnχ

We can now make the indices explicit using

explicit_indices(ex);

58

ψaσ
ma

bσ
nb

cχ
c

This also works when there are trace operators, as is illustrated in the following exam-
ple.

Tr{#}::LaTeXForm("{\rm Tr}").

Tr{#}::Trace(indices=spinor);

ex:= Tr(\sigma^{m} \sigma^{n} + \sigma^{n} \sigma^{m});

Attached property Trace to Tr (#) .

Tr (σmσn + σnσm)

explicit_indices(_);

σma
bσ

nb
a + σna bσ

mb
a

6.3.3 lower free indices

Make all free indices in an expression subscripts.

Free indicies (indices declared with the Indices(position=free) property) can appear
as subscripts or superscripts, but sometimes it is useful to move them all into the same
position.

{a,b,c}::Indices(name=A, position=free);

{m,n,p}::Indices(name=B, position=fixed);

ex:=A_{a b m} B^{a b m};

Attached property Indices(position=free) to [a, b, c] .

Attached property Indices(position=fixed) to [m, n, p] .

AabmB
abm

lower_free_indices(_);

AabmBab
m

The opposite of this is raise_free_indices, which moves all indices to be super-
scripts.

6.3.4 raise free indices

Make all free indices in an expression superscripts.

Free indicies (indices declared with the Indices(position=free) property) can appear
as subscripts or superscripts, but sometimes it is useful to move them all into the same
position.

59

{a,b,c}::Indices(name=A, position=free);

{m,n,p}::Indices(name=B, position=fixed);

ex:=A_{a b m} B^{a b m};

Attached property Indices(position=free) to [a, b, c] .

Attached property Indices(position=fixed) to [m, n, p] .

AabmB
abm

raise_free_indices(_);

Aab
mB

abm

The opposite of this is lower_free_indices, which moves all free indices to be sub-
scripts.

6.3.5 split index

Split the range of an index into two subsets

Replace a sum by a sum-of-sums, abstractly. Concretely, replaces all index contractions
of a given type by a sum of two terms, each with indices of a different type. Useful for
Kaluza-Klein reductions and the like. An example makes this more clear:

{M,N,P,Q,R}::Indices(full).

{m,n,p,q,r}::Indices(space1).

{a,b,c,d,e}::Indices(space2).

ex:=A_{M p} B_{M p};

split_index(_, M,m,a);

AMpBMp

AmpBmp +AapBap

ex:=A_{M p} B_{M p};

split_index(_, $M,m,4$);

AMpBMp

AmpBmp +A4pB4p

Note that the two index types into which the original indices should be split can be either
symbolic (as in the first case above) or numeric (as in the second case).

60

6.3.6 untrace

Take objects out of traces

When a trace contains objects which do not carry any implicit indices on which the trace
acts, the untrace algorithm can be used to take them out of the trace. This is similar to
the way in which unwrap takes objects out of derivatives when they do not depend on the
object with respect to which the derivative is taken. Unless you declare objects to have a
ImplicitIndex property, they will be taken out. The minimal example does not specify
these indices, e.g.

{A,B}::ImplicitIndex.

tr{#}::Trace.

ex:= tr(q A B);

untrace(_);

tr (qAB)

qtr (AB)

In the declaration of a trace, it is possible to indicate over which indices the trace is being
taken.

{a,b,c}::Indices(spinor).

{m,n,p}::Indices(vector).

C::ImplicitIndex(C_{a b}).

D::ImplicitIndex(D_{a b}).

E::ImplicitIndex(E^{m n}).

Tr{#}::Trace(indices=spinor).

ex:= Tr(C D E);

Tr (CDE)

untrace(_);

ETr (CD)

Note how, even though E has implicit indices, it has been moved out of the trace, as the
latter is declared to be a trace over spinor indices, not vector indices.

6.3.7 rename dummies

Rename dummy indices, within a set or from one set to another.

Rename the dummy indices in an expression. This can be necessary in order to make vari-
ous terms in a sum use the same names for the indices, so that they can be collected.

61

{m,n,p,q,r,s}::Indices(vector);

ex:=A_{m n} B_{m n} - A_{p q} B_{p q};

Attached property Indices(position=free) to (m,n, p, q, r, s) .

AmnBmn −ApqBpq

Using canonicalise does nothing here,

canonicalise(_);

AmnBmn −ApqBpq

However, renaming indices does the trick,

rename_dummies(_);

0

Note that the indices need to have been declared as being part of an index list, using the
Indices property.

The algorithm can also be used to rename dummies from one set to another one, e.g.
to change index conventions (this is used in many of Cadabra’s packages). Here is an
example.

{m,n,p,q}::Indices("one");

{a,b,c,d}::Indices("two");

ex:= A_{m} A^{m} + B_{m} C^{m} + A_{n} A^{n} + Q_{c d} R^{d c};

Attached property Indices(position=free) to [m, n, p, q] .

Attached property Indices(position=free) to [a, b, c, d] .

AmA
m +BmC

m +AnA
n +QcdR

dc

The above expression has indices in two different sets. We now rename the first set to the
second,

rename_dummies(_, "one", "two");

2AaA
a +BaC

a +QcdR
dc

6.3.8 rewrite indices

Rewrite indices by contracting with vielbein or metric.

Rewrite indices on an object by contracting it with a second object which contains indices
of both the old and the new type (a vielbein, in other words, or a metric). A vielbein
example is

62

{m,n,p}::Indices(flat).

{\mu,\nu,\rho}::Indices(curved).

ex:=T_{m n p};

rewrite_indices(_, $T_{\mu\nu\rho}$, e_{μ}^{n});

Tmnp

Tµνρe
µ
me

ν
ne

ρ
p

If you want to raise or lower an index with a metric, this can also be done with as an index
rewriting command, as the following example shows:

{\mu,\nu,\rho,\sigma,\lambda,\kappa}::Indices(curved, position=fixed).

ex:=H_{\mu \nu \rho};

rewrite_indices(_, $H^{\mu \nu \rho}$, $g_{\mu \nu}$);

Hµνρ

Hσλκgµσgνλgρκ

As these examples show, the desired form of the tensor should be given as the first argu-
ment, and the conversion object (metric, vielbein) as the second object.

6.3.9 expand

Write out products of objects with implicit indices.

Write out products of matrices and vectors inside indexbrackets, inserting new dummy
indices for the contraction. This requires that the objects inside the index bracket are
properly declared to have Matrix or ImplicitIndex properties.

Here is an example with multiple matrices:

{a,b,c,d,e}::Indices;

{A,B,C,D}::Matrix;

ex:= (A B C D)_{a b};

Attached property Indices(position=free) to (a, b, c, d, e) .

Attached property Matrix to (A,B,C,D) .

(ABCD) ab

expand(_);

AacBcdCdeDeb

Compare the above to the following example, in which one of the objects inside the bracket
is no longer a matrix:

63

ex:= (A B Q D)_{a b};

(ABQD) ab

expand(_);

AacBcdQDdb

Finally, an example with matrices carrying additional labels, as well as a vector ob-
ject:

{\alpha,\beta}::Indices;

\Gamma{#}::Matrix;

v::ImplicitIndex;

Attached property Indices(position=free) to (α, β) .

Attached property Matrix to Γ (#) .

Attached property ImplicitIndex to v.

ex:=(\Gamma_{r} v)_{\alpha};

(Γrv) α

expand(_);

(Γr) αβvβ

6.4 Tensor component values

6.4.1 complete

Complete a set of substitution rules to cover related objects.

Complete a set of substitution rules with additional rules based on the properties of the
objects appearing in the rules.

This can for instance be used to generate rules for the inverse components of the metric
given the rules for the metric components themselves, as in the example below.

Note that the argument itself gets modified (amended) with the additional rules.

{r,t}::Coordinate.

{m,n,p,q}::Indices(values={r,t}).

g_{m n}::Metric.

g^{m n}::InverseMetric.

rl:={ g_{t t} = r, g_{t r} = r**2/a, g_{r t} = r**2/a, g_{r r} = 1 };

64

(gtt = r, gtr =
r2

a
, grt =

r2

a
, grr = 1)

complete(rl, $g^{m n}$);

(gtt = r, gtr =
r2

a
, grt =

r2

a
, grr = 1, grr = 1 +

r4

a2
(
r − r4

a2

) , grt = − r2

a

(
r − r4

a2

) , gtr =

− r2

a

(
r − r4

a2

) , gtt = 1

r − r4

a2

)

Note that this uses SymPy behind the scenes to do the scalar algebra and matrix inver-
sion.

6.4.2 evaluate

Evaluate components of a tensor expression.

Given an abstract tensor expression and a set of rules for the components of tensors occur-
ring in this expression, evaluate the components of the full expression.

The minimal information needed for this to work is a declaration of the indices used, and
a declaration of the values that those indices use:
{r,t}::Coordinate.

{m,n,p,s}::Indices(values={t,r}).

ex:= A_{n m} B_{m n p} (C_{p s} + D_{s p});

AnmBmnp (Cps +Dsp)

The list of component values should be given just like the list of rules for the substitute

algorithm, that is, as equalities
rl:= [A_{r t} = 3, B_{t r t} = 2, B_{t r r} = 5, C_{t r} = 1, D_{r t} = r**2*t

, D_{t r}=t**2];

(Art = 3, Btrt = 2, Btrr = 5, Ctr = 1, Drt = r2t,Dtr = t2)

The evaluate algorithm then works out the values of the components of the ex expression,
which will be denoted with a □ in its output,
evaluate(ex, rl);

□r =6r2t+ 6

□t =15t2

65

6.5 Factorisation

6.5.1 factor in

Collect terms in a sum that differ only by given pre-factors.

Given a list of symbols, this algorithm collects terms in a sum that only differ by pre-factors
consisting of these given symbols. As an example,

ex:=a b + a c + a d;

ab+ ac+ ad

factor_in(_, b,c);

(b+ c) a+ ad

The name is perhaps most easily understood by thinking of it as a complement to
factor_out. Or in case you are familiar with FORM, factor_in is like its antibracket

statement.

The algorithm of course also works with indexed objects, as in

ex:=A_{m} B_{m} + C_{m} A_{m};

factor_in(_, B_{n}, C_{n});

AmBm + CmAm

AmBm + CmAm

(not yet finished)

6.5.2 factor out

Isolate common factors in a sum of products

Given a list of symbols, this algorithm tries to factor those symbols out of terms. As an
example,

ex:= a b + a c e + a d;

ab+ ace+ ad

factor_out(_, a);

a (b+ ce+ d)

If you have non-commuting objects and want to factor out to the right, use the right=True

option, as in

66

{A,B,C,D}::NonCommuting;

ex:= A B C D + B A C D;

factor_out(ex, D, right=True);

Attached property NonCommuting to [A, B, C, D] .

ABCD +BACD

(ABC +BAC)D

In case you are familiar with FORM, factor_out is like its bracket statement. If you add
more factors to factor out, it works as in the following example.

ex:= a b + a c e + a c + c e + c d + a d;

ab+ ace+ ac+ ce+ cd+ ad

factor_out(_, a, c);

a (b+ d) + ac (e+ 1) + c (e+ d)

That is, separate terms will be generated for terms which differ by powers of the factors to
be factored out.

The algorithm of course also works with indexed objects, as in

ex:= A_{m} B_{m} + C_{m} A_{m};

AmBm + CmAm

factor_out(_, A_{m});

Am (Bm + Cm)

6.6 Spinors and fermions

6.6.1 expand diracbar

Simplify the Dirac bar of a composite object.

Rewrite the Dirac conjugate of a product of spinors and gamma matrices as a product of
Dirac and hermitean conjugates. This uses

ψ = iψ†Γ0 , (6.3)

together with

Γ†
m = Γ0ΓmΓ0 . (6.4)

For example,

67

\bar{#}::DiracBar.

\psi::Spinor(dimension=10).

\Gamma{#}::GammaMatrix.

ex:=\bar{\Gamma^{m n p} \psi};

Γmnpψ

expand_diracbar(_);

ψΓmnp

6.6.2 fierz

Perform a Fierz transformation on a product of four spinors

Change the order of the spinors in a four-spinor expression using a Fierz transformation.
This relies on the generic fact that Dirac gamma matrices satisfy the completeness rela-
tion ∑

a

(Γa)ij (Γ
a)kl = δilδjk .

The following example explains the typical usage pattern.

{m,n,p,q,r,s}::Indices;

{m,n,p,q,r,s}::Integer(0..3);

\Gamma{#}::GammaMatrix;

\bar{#}::DiracBar;

{\theta, \lambda, \psi, \chi}::Spinor;

ex:=\bar{\theta} \Gamma_{m} \chi \bar{\psi} \Gamma^{m} \lambda;

Attached property Indices(position=free) to (m,n, p, q, r, s) .

Attached property Integer to (m,n, p, q, r, s) .

Attached property GammaMatrix to Γ (#) .

Attached property DiracBar to #.

Attached property Spinor to (θ, λ, ψ, χ) .

θΓmχψΓ
mλ

fierz(_, $\theta, \lambda, \psi, \chi$);

− 1

4
θΓmΓmλψχ− 1

4
θΓmΓnΓ

mλψΓnχ− 1

8
θΓmΓnpΓ

mλψΓpnχ

68

The argument to fierz is the required order of the fermions; note that this algorithm does
not flip around Majorana spinors and sort_spinors should be used for that. Also note
that it is important to define not only the symbols representing the spinors, Dirac bar and
gamma matrices, but also the range of the indices.

6.6.3 join gamma

Work out the product of two generalised Dirac gamma matrices.

Join two fully anti-symmetrised gamma matrix products according to the expression

Γb1...bnΓa1...am =

min(n,m)∑
p=0

n!m!

(n− p)!(m− p)!p!
Γ[b1...bn−p

[ap+1...amη
bn−p+1...bn]

a1...am−p] . (6.5)

This is the opposite of split_gamma.

Without further arguments, the anti-symmetrisations will be worked out explicitly
(changed from v1). The setting the flag “expand” to false instead keeps them implicit.
Compare

\Gamma{#}::GammaMatrix(metric=g).

ex:= \Gamma_{m n} \Gamma_{p};

join_gamma(ex, expand=False);

ΓmnΓp

Γmnp + 2Γmgnp

with

\Gamma{#}::GammaMatrix(metric=g).

ex:= \Gamma_{m n} \Gamma_{p};

join_gamma(ex, expand=True);

ΓmnΓp

Γmnp + Γmgnp − Γngmp

Note that the gamma matrices need to have a metric associated to them in order for this
algorithm to work. In order to reduce the number of terms somewhat, one can instruct the
algorithm to make use of generalised Kronecker delta symbols in the result; these symbols
are defined as

δr1s1
r2

s2 · · · rnsn = δ[r1s1δ
r2

s2 · · · rn]sn . (6.6)

Anti-symmetrisation is implied in the set of even-numbered indices. The use of these sym-
bols is triggered by the use_gendelta option,

69

{m,n,p,q}::Indices(position=fixed).

\Gamma{#}::GammaMatrix(metric=\delta).

ex:=\Gamma_{m n} \Gamma^{p q};

join_gamma(_, use_gendelta=True);

ΓmnΓ
pq

Γmn
pq + Γm

qδn
p − Γm

pδn
q − Γn

qδm
p + Γn

pδm
q + 2δn

p
m

q

6.6.4 sort spinors

Sort Majorana spinor bilinears

Sorts Majorana spinor bilinears using the Majorana flip property, which for anti-commuting
spinors takes the form

ψ1Γr1···rnψ2 = αβn(−)
1
2
n(n−1) ψ1Γr1···rnψ2 . (6.7)

Here α and β determine the properties of the charge conjugation matrix,

CT = αC , CΓrC−1 = βΓT
r . (6.8)

Here is an example.

{\chi, \psi, \psi_{m}}::Spinor(dimension=10, type=MajoranaWeyl).

{\chi, \psi, \psi_{m}}::AntiCommuting.

\bar{#}::DiracBar.

\Gamma{#}::GammaMatrix.

{\psi_{m}, \psi, \chi}::SortOrder.

ex:=\bar{\chi} \Gamma_{m n} \psi;

χΓmnψ

sort_spinors(_);

− ψΓmnχ

6.6.5 split gamma

Split a Dirac gamma matrix off a generalised product of gamma matrices.

Given a generalised product of Dirac gamma matrices, rewrite it as a product with an
explicit single gamma matrix. This is the inverse of the join_gamma algorithm. An exam-
ple:

\Gamma{#}::GammaMatrix(metric=\eta);

ex:=\Gamma^{m n p};

70

Attached property GammaMatrix to Γ (#) .

Γmnp

split_gamma(_, on_back=False);

ΓmΓnp − Γpηmn + Γnηmp

6.7 Sorting and canonicalisation

6.7.1 asym

Anti-symmetrise or symmetrise an expression in indicated indices or arguments

Anti-symmetrise or symmetrise (depending on the antisymmetric flag) a product or tensor
in the indicated objects. This works both with normal objects and with indices. An example
of the former:

ex:=A B C;

ABC

asym(_, A,B,C);

1

6
ABC − 1

6
ACB − 1

6
BAC +

1

6
BCA+

1

6
CAB − 1

6
CBA

When used with indices, remember to also indicate whether you want to symmetrise upper
or lower indices, as in the example below.

ex:=A_{m n} B_{p};

AmnBp

asym(_, $_{m}, _{n}, _{p}$);

1

6
AmnBp −

1

6
AmpBn − 1

6
AnmBp +

1

6
AnpBm +

1

6
ApmBn − 1

6
ApnBm

If you want to symmetrise in the indicated objects instead, use the antisymmetric=False

flag:

ex:=A_{m n} B_{p};

asym(_, $_{m}, _{n}, _{p}$, antisymmetric=False);

AmnBp

1

6
AmnBp +

1

6
AmpBn +

1

6
AnmBp +

1

6
AnpBm +

1

6
ApmBn +

1

6
ApnBm

71

6.7.2 canonicalise

Bring a tensorial expression to canonical form by re-ordering indices.

Canonicalise a product of tensors, using the mono-term index symmetries of the individual
tensors and the exchange symmetries of identical tensors. Tensor exchange takes into
account commutativity properties of identical tensors.

Note that this algorithm does not take into account multi-term symmetries such as
the Ricci identity of the Riemann tensor; those canonicalisation procedures require the
use of young_project_tensor or young_project_product. Similarly, dimension-
dependent identities are not taken into account, use decompose_product for those.

In order to specify symmetries of tensors you need to use symmetry properties such
as Symmetric, AntiSymmetric or TableauSymmetry. The following example illustrates
this.

A_{m n}::AntiSymmetric.

B_{p q}::Symmetric.

ex:=A_{m n} B_{m n};

canonicalise(_);

AmnBmn

0

If the various terms in an expression use different index names, you may need an additional
call to rename_dummies before the terms get collected together:

{m,n,p,q,r,s}::Indices.

A_{m n}::AntiSymmetric.

C_{p q r}::AntiSymmetric.

ex:=A_{m n} C_{m n q} + A_{s r} C_{s q r};

canonicalise(_);

AmnCmnq +AsrCsqr

AmnCqmn −ArsCqrs

rename_dummies(_);

0

If you have symmetric or anti-symmetric tensors with many indices, it sometimes pays off
to sort them to the end of the expression (this may speed up the canonicalisation process
considerably).

72

6.7.3 young project product

Project all tensors in a product with their Young tableau projector.

Project all tensors in a product with their Young tableau projector. Each factor is projected
in turn, after which the product is distributed and then canonicalised. This is often faster
and more memory-efficient than first projecting every factor and then distributing.

Young projection can be used to find equalities between tensor polynomials which are due
to multi-term symmetries, such as the Ricci identity in the example below.

{a,b,c,d}::Indices.

R_{a b c d}::RiemannTensor.

ex:=2 R_{a b c d} R_{a c b d} - R_{a b c d} R_{a b c d};

2RabcdRacbd −RabcdRabcd

young_project_product(_);

0

6.7.4 young project tensor

Project tensors with their Young projector.

Project tensors with their Young projection operator. This works for simple symmetric or
anti-symmetric objects, as in

A_{m n}::Symmetric.

ex:= A_{m n} A_{m p};

AmnAmp

young_project_tensor(_);(
1

2
Amn +

1

2
Anm

)(
1

2
Amp +

1

2
Apm

)
but more generically works for any tensor which has a TableauSymmetry property attached
to it.

A_{m n p}::TableauSymmetry(shape={2,1}, indices={0,2,1}).

ex:= A_{m n p};

Amnp

young_project_tensor(_);

73

1

3
Amnp +

1

3
Apnm − 1

3
Anmp −

1

3
Apmn

When the parameters modulo_monoterm is set to True, the resulting expression will be
simplified using the monoterm symmetries of the tensor,

A_{m n p}::TableauSymmetry(shape={2,1}, indices={0,2,1}).

ex:= A_{m n p};

Amnp

young_project_tensor(_, modulo_monoterm=True);

2

3
Amnp −

1

3
Anpm +

1

3
Ampn

(in this example, the tensor is anti-symmetric in the indices 0 and 1, hence the simplifica-
tion compared to the previous example).

6.7.5 meld

Combine terms when allowed by symmetries.

In a sum of terms, combine terms using mono-term and multi-term symmetries such that
the expression does not use an overcomplete basis. The meld algorithm does not rewrite
the expression to a canonical form, but it instead combines terms such that no terms re-
main which are a linear combination of the other terms. It can hence be used to prove
equivalency of expressions under both mono-term and multi-term symmetries. A typical
use cases where meld is preferable over e.g. canonicalise is when the expression contains
tensors with multi-term symmetries:

R_{a b c d}::RiemannTensor;

ex:=R_{a b c d}R_{a b c d} + R_{a b c d}R_{a c b d};

meld(ex);

Attached property TableauSymmetry to Rabcd.

RabcdRabcd +RabcdRacbd

3

2
RabcdRabcd

What has happened here is that the algorithm figured out that the first term is expressible
in terms of the second, and has combined the two. If you write the terms in the opposite
order, meld still combines them, but now in the form of the other term:

ex:=R_{a b c d}R_{a c b d}+ R_{a b c d}R_{a b c d};

meld(ex);

74

RabcdRacbd +RabcdRabcd

3RabcdRacbd

So meld does not canonicalise, but rather writes the expression such that there remain
no linear dependencies between terms. This algorithm can of course be used for simpler
situations, e.g. one which uses mono-term symmetries only:

A_{m n}::AntiSymmetric;

ex:=A_{m n} - A_{n m};

meld(ex);

Attached property AntiSymmetric to Amn.

Amn −Anm

2Amn

The meld algorithm can also be used as a quick way to collect terms which only differ by
dummy index relabelling (even when there are no symmetries present), e.g.

ex:=Q_{m n} R^{m n} + R^{p q} Q_{p q};

QmnR
mn +RpqQpq

meld(ex);

2QmnR
mn

The algorithm also handles cyclic symmetries of traces:

{\mu,\nu}::Indices(vector).

u^{\mu}::ImplicitIndex.

u^{\mu}::SelfNonCommuting.

tr{#}::Trace.

ex := tr{u^{\mu} u^{\mu} u^{\nu} u^{\nu}} -

tr{u^{\mu} u^{\nu} u^{\nu} u^{\mu}};

meld(ex);

tr (uµuµuνuν)− tr (uµuνuνuµ)

0

6.7.6 sort product

Sort factors in a product

Sort factors in a product, taking into account any SortOrder properties. Also takes into
account commutativity properties, such as SelfCommuting. If no sort order is given, it first
does a lexographical sort based on the name of the factor, and if two names are identical,

75

does a sort based on the number of children and (if this number is equal) a lexographical
comparison of the names of the children. Symbols starting with a backslash (greek letters
etc.) get sorted to the right of roman letters.

The simplest sort is illustrated below,

ex := C B A D;

sort_product(_);

CBAD

ABCD

We can declare the objects to be anti-commuting, which then leads to

{A, B, C, D}::AntiCommuting.

ex := C B A D;

sort_product(_);

CBAD

−ABCD

For indexed objects, the anti-commutativity of components is indicated using the
SelfAntiCommuting property,

\psi_{m}::SelfAntiCommuting.

ex := \psi_{n} \psi_{m} \psi_{p};

sort_product(_);

ψnψmψp

− ψmψnψp

Finally, the lexographical sort order can be overridden by using the SortOrder prop-
erty,

{D, C, B, A}::SortOrder.

{A, B, C, D}::AntiCommuting.

ex := C B A D;

sort_product(_);

CBAD

−DCBA

6.7.7 sort sum

Sort terms in a sum.

76

Sort terms in a sum, taking into account any SortOrder properties, or else sorting lexo-
graphically.

ex:=E+D+A+C+B;

E +D +A+ C +B

sort_sum(_);

A+B + C +D + E

This is often useful in case sums appear as exponents; in this case it is necessary to first
sort the sums before terms can be collected, as the following example shows.

ex:=a**(-1+d) - a**(d-1);

a(−1+d) − a(d−1)

sort_sum(_);

0

6.8 Weights and perturbations

6.8.1 drop weight

Drop terms with given weight

Drop those terms for which a product has the indicated weight. Weights are computed
by making use of the Weight property of symbols. This algorithm does the opposite of
keep_weight.

As an example, consider the simple case in which we want to drop all terms with 3 fields.
This is done using

{A,B}::Weight(label=field);

ex:=A B B + A A A + A B + B;

Attached property Weight to [A, B] .

ABB +AAA+AB +B

drop_weight(_, $field=3$);

AB +B

However, you can also do more complicated things by assigning non-unit weights to sym-
bols, as in the example below,

77

{A,B}::Weight(label=field);

C::Weight(label=field, value=2);

ex:=A B B + A A A + A B + A C + B:

Attached property Weight to [A, B] .

Attached property Weight to C.

drop_weight(_, $field=3$);

AB +B

Weights can be “inherited” by operators by using the WeightInherit property. Here is an
example using partial derivatives,

{\phi,\chi}::Weight(label=small, value=1);

\partial{#}::PartialDerivative;

\partial{#}::WeightInherit(label=all, type=multiplicative);

ex:=\phi \partial_{0}{\phi} + \partial_{0}{\lambda} + \lambda \partial_{3}{\chi

};

Attached property Weight to [ϕ, χ] .

Attached property PartialDerivative to ∂#.

Attached property WeightInherit to ∂#.

ϕ∂0ϕ+ ∂0λ+ λ∂3χ

drop_weight(_, $small=1$);

ϕ∂0ϕ+ ∂0λ

6.8.2 keep weight

Keep terms with indicated weight

Keep only those terms for which a product has the indicated weight. Weights are computed
by making use of the Weight property of symbols. This algorithm does the opposite of
drop_weight.

As an example, consider the simple case in which we want to keep all terms with 3 fields.
This is done using

{A,B}::Weight(label=field);

ex:=A B B + A A A + A B + B;

keep_weight(_, $field=3$);

Attached property Weight to [A, B] .

ABB +AAA+AB +B

78

ABB +AAA

However, you can also do more complicated things by assigning non-unit weights to sym-
bols, as in the example below,

{A,B}::Weight(label=field);

C::Weight(label=field, value=2);

ex:= A B B + A A A + A B + A C + B;

Attached property Weight to [A, B] .

Attached property Weight to C.

ABB +AAA+AB +AC +B

keep_weight(_, $field=3$);

ABB +AAA+AC

Weights also apply to tensorial expressions. Consider e.g. a situation in which we have a
polynomial of the type

ex:=c^{a} + c^{a}_{b} x^{b} + c^{a}_{b c} x^{b} x^{c} + c^{a}_{b c d} x^{b} x^{

c} x^{d};

ca + ca bx
b + ca bcx

bxc + ca bcdx
bxcxd

and we want to keep only the quadratic term. This can be done using

x^{a}::Weight(label=crd, value=1);

c^{#}::Weight(label=crd, value=0);

Attached property Weight to xa.

Attached property Weight to c#.

keep_weight(ex, $crd=2$);

ca bcx
bxc

Weights can be “inherited” by operators by using the WeightInherit property. Here is an
example using partial derivatives,

{\phi,\chi}::Weight(label=small, value=1);

\partial{#}::PartialDerivative;

\partial{#}::WeightInherit(label=all, type=multiplicative);

ex:=\phi \partial_{0}{\phi} + \partial_{0}{\lambda} + \lambda \partial_{3}{\chi

};

keep_weight(_, $small=1$);

Attached property Weight to [ϕ, χ] .

79

Attached property PartialDerivative to ∂#.

Attached property WeightInherit to ∂#.

ϕ∂0ϕ+ ∂0λ+ λ∂3χ

λ∂3χ

If you want to use weights for dimension counting, in which operators can also carry a
dimension themselves (e.g. derivatives), then use the self attribute,

reset();

{\phi,\chi}::Weight(label=length, value=1);

x::Coordinate;

\partial{#}::PartialDerivative;

\partial{#}::WeightInherit(label=length, type=multiplicative, self=-1);

ex:=\phi \partial_{x}{\phi} + \phi\chi + \partial_{x}{ \phi \chi**2 };

Attached property Weight to [ϕ, χ] .

Attached property Coordinate to x.

Attached property PartialDerivative to ∂#.

Attached property WeightInherit to ∂#.

ϕ∂xϕ+ ϕχ+ ∂x
(
ϕχ2

)
keep_weight(_, $length=1$);

ϕ∂xϕ

6.9 Simplification

6.9.1 collect factors

Collect identical factors in a product.

Collect factors in a product that differ only by their exponent. Note that factors containing
sub- or superscripted indices do not get collected (i.e. AmA

m does not get reduced to
(Am)2).

ex:=A A B A B A;

AABABA

collect_factors(_);

80

A4B2

Arbitrary powers can be collected this way,

ex:=X X**(-1) X**(-4);

XX−1X−4

collect_factors(_);

X−4

The exponent notation can be expanded again using expand_power.

ex:=X**4;

expand_power(_);

X4

XXXX

6.9.2 collect terms

Collect identical terms in a sum.

Collect terms in a sum that differ only by their numerical pre-factor. This is part of the
default post_process function, so does not need to be called by hand.

Note that this command only collects terms which are identical, it does not collect terms
which are different but mathematically equivalent. See sort_sum for an example.

6.9.3 map sympy

Map Sympy algorithms to Cadabra expressions

Cadabra expressions are typically tensor expressions, which you cannot feed directly into
Sympy. With the map_sympy function you can recursively apply Sympy algorithms to the
scalar parts of Cadabra expressions.

The simplest example is when you have a scalar expression in Cadabra, for instance

ex:= \int{\sin(x)}{x};∫
sinx dx

map_sympy(ex);

− cosx

81

The inert Cadabra expression gets evaluated by Sympy and then stored again in the ‘ex‘
object,

ex;

− cosx

In more complicated cases you may have a tensorial expression which you would like to
simplify using Sympy, for instance

ex:= (\sin(x)**2 + \cos(x)**2) A_{m} - A_{m};(
(sinx)2 + (cosx)2

)
Am −Am

map_sympy(ex, "simplify");

0

6.9.4 simplify

Simplify the scalar part of an expression.

When expressions (or sub-expressions) involve scalars, simplification of such expressions
can be ‘outsourced’ to an external scalar computer algebra system, at present either Sympy
or Mathematica. The simplify algorithm finds all scalar sub-expressions and runs the
simplification algorithm of one of these systems on them.

ex:= (\sin{x}**2 + \cos{x}**2) A_{m};(
(sinx)2 + (cosx)2

)
Am

simplify(_);

Am

By default it will use the Sympy backend, but if you have compiled Cadabra on a system
which has Mathematica installed, you can also switch it to use Mathematica instead, by
using

kernel(scalar_backend="mathematica")

6.10 Representations

6.10.1 decompose

Decompose a tensor monomial on a given basis of monomials.

82

The basis should be given in the second argument. All tensor symmetries, including those
implied by Young tableau Garnir symmetries, are taken into account. Example,

{m,n,p,q}::Indices(vector).

{m,n,p,q}::Integer(0..10).

R_{m n p q}::RiemannTensor.

ex:=R_{m n q p} R_{m p n q};

RmnqpRmpnq

decompose(ex, $R_{m n p q} R_{m n p q}$);[
− 1

2

]
Note that this algorithm does not yet take into account dimension-dependent identities,
but it is nevertheless already required that the index range is specified.

6.10.2 decompose product

Decompose a product of tensors by using Young projectors.

Decompose a product of tensors by writing it out in terms of irreducible Young tableau
representations, discarding the ones which vanish in the indicated dimension, and putting
the results back together again. This algorithm can thus be used to equate terms which are
identical only in certain dimensions.

If there are no dimension-dependent identities playing a role in the product, then
decompose_product returns the original expression,

{ m, n, p, q }::Indices(vector);

{ m, n, p, q }::Integer(1..4);

{ A_{m n p}, B_{m n p} }::AntiSymmetric;

ex:= A_{m n p} B_{m n q} - A_{m n q} B_{m n p};

Attached property Indices(position=free) to {m,n, p, q } .

Attached property Integer to {m,n, p, q } .

Attached property AntiSymmetric to {Amnp, Bmnp } .

AmnpBmnq −AmnqBmnp

decompose_product(_)

canonicalise(_);

ApmnBqmn −AqmnBpmn

83

However, in the present example, a Schouten identity makes the expression vanish identi-
cally in three dimensions,

{ m, n, p, q }::Integer(1..3);

ex:=A_{m n p} B_{m n q} - A_{m n q} B_{m n p};

decompose_product(ex)

canonicalise(ex);

Attached property Integer to {m,n, p, q } .

AmnpBmnq −AmnqBmnp

0

Note that decompose_product is unfortunately computationally expensive, and is therefore
not practical for large dimensions.

6.10.3 lr tensor

Compute the tensor product of two Young tableaux

Compute the tensor product of two tableaux or filled tableaux. The algorithm acts on
objects which have the Tableau or FilledTableau property, through which it is possible
to set the dimension. The standard Littlewoord-Richardson algorithm is used to construct
the tableaux in the tensor product. An example with Tableau objects is given below.

\tableau{#}::Tableau(dimension=10).

ex:=\tableau{2}{2} \tableau{2}{2}{1};

lr_tensor(_);

⊗

⊕ ⊕ ⊕ ⊕ ⊕

84

⊕ ⊕ ⊕

The same example, but now with FilledTableau objects, is

\ftableau{#}::FilledTableau(dimension=10).

ex:=\ftableau{0,0}{1,1} \ftableau{a,a}{b,b};

0 0

1 1
⊗

a a

b b

lr_tensor(_);

0 0 a a

1 1 b b
⊕

0 0 a a

1 1 b

b

⊕
0 0 a a

1 1

b b

⊕

0 0 a

1 1 b

a

b

⊕

0 0 a

1 1

a b

b

⊕

0 0

1 1

a a

b b

ex:=\ftableau{1} \ftableau{2} \ftableau{3} \ftableau{4};

1 ⊗ 2 ⊗ 3 ⊗ 4

converge(ex):

lr_tensor(_)

distribute(_)

;

1 2 3 4 ⊕
1 2 3

4
⊕

1 2 4

3
⊕

1 2

3 4
⊕

1 2

3

4

⊕
1 3 4

2
⊕

1 3

2 4
⊕

1 3

2

4

⊕
1 4

2

3

⊕

1

2

3

4

85

6.11 Sub-expression manipulation

6.11.1 replace match

Put the result of a sub-computation back into the original expression

This algorithm is the partner of take_match; see the documentation of that algorithm for
further details.

6.11.2 take match

Select a subset of terms in a sum for further computations.

The take_match and replace_match algorithms enable you to temporarily work only
on a part of an expression. You select the terms that you want to work on with
take_match. When you are done, put the result back into the larger expression with
replace_match.

A simple example shows how this works:

ex:=A C + B D G + C D A;

AC +BDG+ CDA

take_match(_, $D Q??$);

BDG+ CDA

substitute(_, $C -> Q$);

BDG+QDA

replace_match(_);

AC +BDG+QDA

As you can see here, the replacement C → Q was only done on the 2nd and 3rd term
of the original expression, to which we restricted all manipulations using the take_match

command.

This of course also works with more complicated, tensorial expressions, as the example
below shows.

ex:= A_{m n} \chi B^{m}_{p} + \psi A_{n p};

AmnχB
m

p + ψAnp

take_match(_, $\chi Q??$);

AmnχB
m

p

86

substitute(_, $A_{m n} -> C_{m n}$);

CmnχB
m

p

replace_match(_);

CmnχB
m

p + ψAnp

When you are working on a part of an expression, you can restrict attention further by
applying take_match again. The replace_match then puts sub-expressions back into the
larger expression in reverse order:

ex:=A B + C B + C D B;

AB + CB + CDB

take_match(_, $C Q??$);

CB + CDB

substitute(_, $C -> Q$);

QB +QDB

take_match(_, $D Q??$);

QDB

substitute(_, $B -> R$);

QDR

replace_match(_);

QB

replace_match(_);

AB +QB

6.11.3 zoom

Only show selected terms in a sum, and restrict subsequent algorithms to these terms.

Often you want manipulations to only apply to a selected subset of terms in a large sum.
The zoom algorithm makes only certain terms visible, representing the remaining terms
with dots. Any subsequent algorithms will only act on these visible terms.

Here is an expression with 5 terms,

ex:=\int{ A_{m n} + B_{m n} C + D_{m} F_{n} C + T_{m n} + B_{m n} R}{x};∫
(Amn +BmnC +DmFnC + Tmn +BmnR) dx

87

In order to restrict attention only to the terms containing a Bmn factor, we use

zoom(_, $B_{m n} Q??$);∫
(. . .+BmnC + . . .+BmnR) dx

Subsequent algorithms only work on the visible terms above, not on the terms hidden
inside the dots,

substitute(_, $C->Q$);∫
(. . .+BmnQ+ . . .+BmnR) dx

To make the hidden terms visible again, use unzoom, and note that the third term below
has remained unaffected by the substitution above,

unzoom(_);∫
(Amn +BmnQ+DmFnC + Tmn +BmnR) dx

The zoom/unzoom combina-
tion is somewhat similar to the old deprecated take_match/replace_match algorithms,
but makes it more clear that terms have been suppressed. It is possible to give zoom a list
of patterns, in which case each term that is kept must match at least one of these patterns.
See the examples below.

ex:= x A1 + x**2 A2 + y A3 + y**2 A4;

xA1 + x2A2 + yA3 + y2A4

zoom(ex, ${x A??, y A??}$);

xA1 + . . .+ yA3 + . . .

unzoom(ex);

xA1 + x2A2 + yA3 + y2A4

zoom(ex, ${x A??, x**2 A??}$);

xA1 + x2A2 + . . .

88

6
Bibliography

[1] Kasper Peeters, Pierre Vanhove, and Anders Westerberg. “Supersymmetric higher-
derivative actions in ten and eleven dimensions, the associated superalgebras and
their formulation in superspace”. In: Class. Quant. Grav 18 (2001), pp. 843–889.
eprint: hep-th/0010167.

[2] Kasper Peeters and Anders Westerberg. “The Ramond-Ramond sector of string theory
beyond leading order”. In: Class. Quant. Grav. 21 (2004), pp. 1643–1666. eprint:
hep-th/0307298.

[3] Kasper Peeters. “Introducing Cadabra: a symbolic computer algebra system for field
theory problems”. In: (2007). eprint: hep-th/0701238.

[4] Kasper Peeters. “Cadabra2: computer algebra for field theory revisited”. In: J. Open
Source Softw. 3.32 (2018), p. 1118. DOI: 10.21105/joss.01118.

89

hep-th/0010167
hep-th/0307298
hep-th/0701238
https://doi.org/10.21105/joss.01118

	Introduction and overview
	Bird's eye overview
	Cadabra's design philosophy
	History

	The input format
	Input format
	Mathematical expressions
	Algorithms

	Printing expressions in various formats
	Basic usage
	Other output formats
	Printing custom LaTeX

	Object properties and declaration
	Generic properties
	List properties and symbol groups
	Querying properties

	Indices, dummy indices and automatic index renaming
	Implicit versus explicit indices
	Converting between implicit and explicit

	Mathematical properties
	Derivatives and implicit dependence on coordinates

	Manipulating expressions
	Selecting parts of expressions
	Zooming into an expression

	Using multiple files and notebooks
	Importing a notebook into another one
	Writing expressions to a file and reading them back

	Default simplification
	Patterns, conditionals and regular expressions
	Conditionals

	Numerical evaluation of expressions
	More complicated examples
	Supported elementary functions

	Writing your own packages
	Programming in Cadabra
	Fundamental Cadabra objects: Ex and ExNode
	ExNode and Python iterators
	Traversing the expression tree
	Arguments and indices
	Querying properties
	Expression pattern matching
	Example: covariant derivatives

	Using Cadabra directly from C++
	Simple example

	Algorithms
	Substitution and variation
	distribute
	product_rule
	substitute
	vary
	expand_power
	unwrap
	integrate_by_parts

	Metrics and bundles
	eliminate_kronecker
	eliminate_metric
	eliminate_vielbein
	einsteinify
	epsilon_to_delta
	expand_delta
	reduce_delta

	Index manipulations
	combine
	explicit_indices
	lower_free_indices
	raise_free_indices
	split_index
	untrace
	rename_dummies
	rewrite_indices
	expand

	Tensor component values
	complete
	evaluate

	Factorisation
	factor_in
	factor_out

	Spinors and fermions
	expand_diracbar
	fierz
	join_gamma
	sort_spinors
	split_gamma

	Sorting and canonicalisation
	asym
	canonicalise
	young_project_product
	young_project_tensor
	meld
	sort_product
	sort_sum

	Weights and perturbations
	drop_weight
	keep_weight

	Simplification
	collect_factors
	collect_terms
	map_sympy
	simplify

	Representations
	decompose
	decompose_product
	lr_tensor

	Sub-expression manipulation
	replace_match
	take_match
	zoom

